forked from M-Labs/nalgebra
152 lines
3.8 KiB
Rust
152 lines
3.8 KiB
Rust
use crate::geometry::{Rotation, UnitComplex, UnitQuaternion};
|
|
use crate::{Const, OVector, Point, SVector, Scalar, SimdRealField, Unit};
|
|
|
|
use simba::scalar::ClosedMul;
|
|
|
|
/// Trait implemented by rotations that can be used inside of an `Isometry` or `Similarity`.
|
|
pub trait AbstractRotation<T: Scalar, const D: usize>: PartialEq + ClosedMul + Clone {
|
|
/// The rotation identity.
|
|
fn identity() -> Self;
|
|
/// The rotation inverse.
|
|
fn inverse(&self) -> Self;
|
|
/// Change `self` to its inverse.
|
|
fn inverse_mut(&mut self);
|
|
/// Apply the rotation to the given vector.
|
|
fn transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D>;
|
|
/// Apply the rotation to the given point.
|
|
fn transform_point(&self, p: &Point<T, D>) -> Point<T, D>;
|
|
/// Apply the inverse rotation to the given vector.
|
|
fn inverse_transform_vector(&self, v: &OVector<T, Const<D>>) -> OVector<T, Const<D>>;
|
|
/// Apply the inverse rotation to the given unit vector.
|
|
fn inverse_transform_unit_vector(&self, v: &Unit<SVector<T, D>>) -> Unit<SVector<T, D>> {
|
|
Unit::new_unchecked(self.inverse_transform_vector(&**v))
|
|
}
|
|
/// Apply the inverse rotation to the given point.
|
|
fn inverse_transform_point(&self, p: &Point<T, D>) -> Point<T, D>;
|
|
}
|
|
|
|
impl<T: SimdRealField, const D: usize> AbstractRotation<T, D> for Rotation<T, D>
|
|
where
|
|
T::Element: SimdRealField,
|
|
{
|
|
#[inline]
|
|
fn identity() -> Self {
|
|
Self::identity()
|
|
}
|
|
|
|
#[inline]
|
|
fn inverse(&self) -> Self {
|
|
self.inverse()
|
|
}
|
|
|
|
#[inline]
|
|
fn inverse_mut(&mut self) {
|
|
self.inverse_mut()
|
|
}
|
|
|
|
#[inline]
|
|
fn transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D> {
|
|
self * v
|
|
}
|
|
|
|
#[inline]
|
|
fn transform_point(&self, p: &Point<T, D>) -> Point<T, D> {
|
|
self * p
|
|
}
|
|
|
|
#[inline]
|
|
fn inverse_transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D> {
|
|
self.inverse_transform_vector(v)
|
|
}
|
|
|
|
#[inline]
|
|
fn inverse_transform_unit_vector(&self, v: &Unit<SVector<T, D>>) -> Unit<SVector<T, D>> {
|
|
self.inverse_transform_unit_vector(v)
|
|
}
|
|
|
|
#[inline]
|
|
fn inverse_transform_point(&self, p: &Point<T, D>) -> Point<T, D> {
|
|
self.inverse_transform_point(p)
|
|
}
|
|
}
|
|
|
|
impl<T: SimdRealField> AbstractRotation<T, 3> for UnitQuaternion<T>
|
|
where
|
|
T::Element: SimdRealField,
|
|
{
|
|
#[inline]
|
|
fn identity() -> Self {
|
|
Self::identity()
|
|
}
|
|
|
|
#[inline]
|
|
fn inverse(&self) -> Self {
|
|
self.inverse()
|
|
}
|
|
|
|
#[inline]
|
|
fn inverse_mut(&mut self) {
|
|
self.inverse_mut()
|
|
}
|
|
|
|
#[inline]
|
|
fn transform_vector(&self, v: &SVector<T, 3>) -> SVector<T, 3> {
|
|
self * v
|
|
}
|
|
|
|
#[inline]
|
|
fn transform_point(&self, p: &Point<T, 3>) -> Point<T, 3> {
|
|
self * p
|
|
}
|
|
|
|
#[inline]
|
|
fn inverse_transform_vector(&self, v: &SVector<T, 3>) -> SVector<T, 3> {
|
|
self.inverse_transform_vector(v)
|
|
}
|
|
|
|
#[inline]
|
|
fn inverse_transform_point(&self, p: &Point<T, 3>) -> Point<T, 3> {
|
|
self.inverse_transform_point(p)
|
|
}
|
|
}
|
|
|
|
impl<T: SimdRealField> AbstractRotation<T, 2> for UnitComplex<T>
|
|
where
|
|
T::Element: SimdRealField,
|
|
{
|
|
#[inline]
|
|
fn identity() -> Self {
|
|
Self::identity()
|
|
}
|
|
|
|
#[inline]
|
|
fn inverse(&self) -> Self {
|
|
self.inverse()
|
|
}
|
|
|
|
#[inline]
|
|
fn inverse_mut(&mut self) {
|
|
self.inverse_mut()
|
|
}
|
|
|
|
#[inline]
|
|
fn transform_vector(&self, v: &SVector<T, 2>) -> SVector<T, 2> {
|
|
self * v
|
|
}
|
|
|
|
#[inline]
|
|
fn transform_point(&self, p: &Point<T, 2>) -> Point<T, 2> {
|
|
self * p
|
|
}
|
|
|
|
#[inline]
|
|
fn inverse_transform_vector(&self, v: &SVector<T, 2>) -> SVector<T, 2> {
|
|
self.inverse_transform_vector(v)
|
|
}
|
|
|
|
#[inline]
|
|
fn inverse_transform_point(&self, p: &Point<T, 2>) -> Point<T, 2> {
|
|
self.inverse_transform_point(p)
|
|
}
|
|
}
|