nalgebra/src/linalg/symmetric_eigen.rs
2021-08-04 17:34:25 +02:00

426 lines
13 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#[cfg(feature = "serde-serialize-no-std")]
use serde::{Deserialize, Serialize};
use approx::AbsDiffEq;
use num::Zero;
use crate::allocator::Allocator;
use crate::base::{DefaultAllocator, Matrix2, OMatrix, OVector, SquareMatrix, Vector2};
use crate::dimension::{Dim, DimDiff, DimSub, U1};
use crate::storage::Storage;
use simba::scalar::ComplexField;
use crate::linalg::givens::GivensRotation;
use crate::linalg::SymmetricTridiagonal;
/// Eigendecomposition of a symmetric matrix.
#[cfg_attr(feature = "serde-serialize-no-std", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize-no-std",
serde(bound(serialize = "DefaultAllocator: Allocator<T, D, D> +
Allocator<T::RealField, D>,
OVector<T::RealField, D>: Serialize,
OMatrix<T, D, D>: Serialize"))
)]
#[cfg_attr(
feature = "serde-serialize-no-std",
serde(bound(deserialize = "DefaultAllocator: Allocator<T, D, D> +
Allocator<T::RealField, D>,
OVector<T::RealField, D>: Deserialize<'de>,
OMatrix<T, D, D>: Deserialize<'de>"))
)]
#[derive(Clone, Debug)]
pub struct SymmetricEigen<T: ComplexField, D: Dim>
where
DefaultAllocator: Allocator<T, D, D> + Allocator<T::RealField, D>,
{
/// The eigenvectors of the decomposed matrix.
pub eigenvectors: OMatrix<T, D, D>,
/// The unsorted eigenvalues of the decomposed matrix.
pub eigenvalues: OVector<T::RealField, D>,
}
impl<T: ComplexField, D: Dim> Copy for SymmetricEigen<T, D>
where
DefaultAllocator: Allocator<T, D, D> + Allocator<T::RealField, D>,
OMatrix<T, D, D>: Copy,
OVector<T::RealField, D>: Copy,
{
}
impl<T: ComplexField, D: Dim> SymmetricEigen<T, D>
where
DefaultAllocator: Allocator<T, D, D> + Allocator<T::RealField, D>,
{
/// Computes the eigendecomposition of the given symmetric matrix.
///
/// Only the lower-triangular parts (including its diagonal) of `m` is read.
pub fn new(m: OMatrix<T, D, D>) -> Self
where
D: DimSub<U1>,
DefaultAllocator: Allocator<T, DimDiff<D, U1>> + Allocator<T::RealField, DimDiff<D, U1>>,
{
Self::try_new(m, T::RealField::default_epsilon(), 0).unwrap()
}
/// Computes the eigendecomposition of the given symmetric matrix with user-specified
/// convergence parameters.
///
/// Only the lower-triangular part (including its diagonal) of `m` is read.
///
/// # Arguments
///
/// * `eps` tolerance used to determine when a value converged to 0.
/// * `max_niter` maximum total number of iterations performed by the algorithm. If this
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
/// continues indefinitely until convergence.
pub fn try_new(m: OMatrix<T, D, D>, eps: T::RealField, max_niter: usize) -> Option<Self>
where
D: DimSub<U1>,
DefaultAllocator: Allocator<T, DimDiff<D, U1>> + Allocator<T::RealField, DimDiff<D, U1>>,
{
Self::do_decompose(m, true, eps, max_niter).map(|(vals, vecs)| SymmetricEigen {
eigenvectors: vecs.unwrap(),
eigenvalues: vals,
})
}
fn do_decompose(
mut matrix: OMatrix<T, D, D>,
eigenvectors: bool,
eps: T::RealField,
max_niter: usize,
) -> Option<(OVector<T::RealField, D>, Option<OMatrix<T, D, D>>)>
where
D: DimSub<U1>,
DefaultAllocator: Allocator<T, DimDiff<D, U1>> + Allocator<T::RealField, DimDiff<D, U1>>,
{
assert!(
matrix.is_square(),
"Unable to compute the eigendecomposition of a non-square matrix."
);
let dim = matrix.nrows();
let m_amax = matrix.camax();
if !m_amax.is_zero() {
matrix.unscale_mut(m_amax.clone());
}
let (mut q_mat, mut diag, mut off_diag);
if eigenvectors {
let res = SymmetricTridiagonal::new(matrix).unpack();
q_mat = Some(res.0);
diag = res.1;
off_diag = res.2;
} else {
let res = SymmetricTridiagonal::new(matrix).unpack_tridiagonal();
q_mat = None;
diag = res.0;
off_diag = res.1;
}
if dim == 1 {
diag.scale_mut(m_amax);
return Some((diag, q_mat));
}
let mut niter = 0;
let (mut start, mut end) =
Self::delimit_subproblem(&diag, &mut off_diag, dim - 1, eps.clone());
while end != start {
let subdim = end - start + 1;
#[allow(clippy::comparison_chain)]
if subdim > 2 {
let m = end - 1;
let n = end;
let mut vec = Vector2::new(
diag[start].clone()
- wilkinson_shift(
diag[m].clone().clone(),
diag[n].clone(),
off_diag[m].clone().clone(),
),
off_diag[start].clone(),
);
for i in start..n {
let j = i + 1;
if let Some((rot, norm)) = GivensRotation::cancel_y(&vec) {
if i > start {
// Not the first iteration.
off_diag[i - 1] = norm;
}
let mii = diag[i].clone();
let mjj = diag[j].clone();
let mij = off_diag[i].clone();
let cc = rot.c() * rot.c();
let ss = rot.s() * rot.s();
let cs = rot.c() * rot.s();
let b = cs.clone() * crate::convert(2.0) * mij.clone();
diag[i] = (cc.clone() * mii.clone() + ss.clone() * mjj.clone()) - b.clone();
diag[j] = (ss.clone() * mii.clone() + cc.clone() * mjj.clone()) + b;
off_diag[i] = cs * (mii - mjj) + mij * (cc - ss);
if i != n - 1 {
vec.x = off_diag[i].clone();
vec.y = -rot.s() * off_diag[i + 1].clone();
off_diag[i + 1] *= rot.c();
}
if let Some(ref mut q) = q_mat {
let rot = GivensRotation::new_unchecked(rot.c(), T::from_real(rot.s()));
rot.inverse().rotate_rows(&mut q.fixed_columns_mut::<2>(i));
}
} else {
break;
}
}
if off_diag[m].clone().norm1()
<= eps.clone() * (diag[m].clone().norm1() + diag[n].clone().norm1())
{
end -= 1;
}
} else if subdim == 2 {
let m = Matrix2::new(
diag[start].clone(),
off_diag[start].clone().conjugate(),
off_diag[start].clone(),
diag[start + 1].clone(),
);
let eigvals = m.eigenvalues().unwrap();
let basis = Vector2::new(
eigvals.x.clone() - diag[start + 1].clone(),
off_diag[start].clone(),
);
diag[start] = eigvals[0].clone();
diag[start + 1] = eigvals[1].clone();
if let Some(ref mut q) = q_mat {
if let Some((rot, _)) =
GivensRotation::try_new(basis.x.clone(), basis.y.clone(), eps.clone())
{
let rot = GivensRotation::new_unchecked(rot.c(), T::from_real(rot.s()));
rot.rotate_rows(&mut q.fixed_columns_mut::<2>(start));
}
}
end -= 1;
}
// Re-delimit the subproblem in case some decoupling occurred.
let sub = Self::delimit_subproblem(&diag, &mut off_diag, end, eps.clone());
start = sub.0;
end = sub.1;
niter += 1;
if niter == max_niter {
return None;
}
}
diag.scale_mut(m_amax);
Some((diag, q_mat))
}
fn delimit_subproblem(
diag: &OVector<T::RealField, D>,
off_diag: &mut OVector<T::RealField, DimDiff<D, U1>>,
end: usize,
eps: T::RealField,
) -> (usize, usize)
where
D: DimSub<U1>,
DefaultAllocator: Allocator<T::RealField, DimDiff<D, U1>>,
{
let mut n = end;
while n > 0 {
let m = n - 1;
if off_diag[m].clone().norm1()
> eps.clone() * (diag[n].clone().norm1() + diag[m].clone().norm1())
{
break;
}
n -= 1;
}
if n == 0 {
return (0, 0);
}
let mut new_start = n - 1;
while new_start > 0 {
let m = new_start - 1;
if off_diag[m].clone().is_zero()
|| off_diag[m].clone().norm1()
<= eps.clone() * (diag[new_start].clone().norm1() + diag[m].clone().norm1())
{
off_diag[m] = T::RealField::zero();
break;
}
new_start -= 1;
}
(new_start, n)
}
/// Rebuild the original matrix.
///
/// This is useful if some of the eigenvalues have been manually modified.
#[must_use]
pub fn recompose(&self) -> OMatrix<T, D, D> {
let mut u_t = self.eigenvectors.clone();
for i in 0..self.eigenvalues.len() {
let val = self.eigenvalues[i].clone();
u_t.column_mut(i).scale_mut(val);
}
u_t.adjoint_mut();
&self.eigenvectors * u_t
}
}
/// Computes the wilkinson shift, i.e., the 2x2 symmetric matrix eigenvalue to its tailing
/// component `tnn`.
///
/// The inputs are interpreted as the 2x2 matrix:
/// tmm tmn
/// tmn tnn
pub fn wilkinson_shift<T: ComplexField>(tmm: T, tnn: T, tmn: T) -> T {
let sq_tmn = tmn.clone() * tmn;
if !sq_tmn.is_zero() {
// We have the guarantee that the denominator won't be zero.
let d = (tmm - tnn.clone()) * crate::convert(0.5);
tnn - sq_tmn.clone() / (d.clone() + d.clone().signum() * (d.clone() * d + sq_tmn).sqrt())
} else {
tnn
}
}
/*
*
* Computations of eigenvalues for symmetric matrices.
*
*/
impl<T: ComplexField, D: DimSub<U1>, S: Storage<T, D, D>> SquareMatrix<T, D, S>
where
DefaultAllocator: Allocator<T, D, D>
+ Allocator<T, DimDiff<D, U1>>
+ Allocator<T::RealField, D>
+ Allocator<T::RealField, DimDiff<D, U1>>,
{
/// Computes the eigenvalues of this symmetric matrix.
///
/// Only the lower-triangular part of the matrix is read.
#[must_use]
pub fn symmetric_eigenvalues(&self) -> OVector<T::RealField, D> {
SymmetricEigen::do_decompose(
self.clone_owned(),
false,
T::RealField::default_epsilon(),
0,
)
.unwrap()
.0
}
}
#[cfg(test)]
mod test {
use crate::base::Matrix2;
fn expected_shift(m: Matrix2<f64>) -> f64 {
let vals = m.eigenvalues().unwrap();
if (vals.x - m.m22).abs() < (vals.y - m.m22).abs() {
vals.x
} else {
vals.y
}
}
#[cfg(feature = "rand")]
#[test]
fn wilkinson_shift_random() {
for _ in 0..1000 {
let m = Matrix2::new_random();
let m = m * m.transpose();
let expected = expected_shift(m);
let computed = super::wilkinson_shift(m.m11, m.m22, m.m12);
assert!(relative_eq!(expected, computed, epsilon = 1.0e-7));
}
}
#[test]
fn wilkinson_shift_zero() {
let m = Matrix2::new(0.0, 0.0, 0.0, 0.0);
assert!(relative_eq!(
expected_shift(m),
super::wilkinson_shift(m.m11, m.m22, m.m12)
));
}
#[test]
fn wilkinson_shift_zero_diagonal() {
let m = Matrix2::new(0.0, 42.0, 42.0, 0.0);
assert!(relative_eq!(
expected_shift(m),
super::wilkinson_shift(m.m11, m.m22, m.m12)
));
}
#[test]
fn wilkinson_shift_zero_off_diagonal() {
let m = Matrix2::new(42.0, 0.0, 0.0, 64.0);
assert!(relative_eq!(
expected_shift(m),
super::wilkinson_shift(m.m11, m.m22, m.m12)
));
}
#[test]
fn wilkinson_shift_zero_trace() {
let m = Matrix2::new(42.0, 20.0, 20.0, -42.0);
assert!(relative_eq!(
expected_shift(m),
super::wilkinson_shift(m.m11, m.m22, m.m12)
));
}
#[test]
fn wilkinson_shift_zero_diag_diff_and_zero_off_diagonal() {
let m = Matrix2::new(42.0, 0.0, 0.0, 42.0);
assert!(relative_eq!(
expected_shift(m),
super::wilkinson_shift(m.m11, m.m22, m.m12)
));
}
#[test]
fn wilkinson_shift_zero_det() {
let m = Matrix2::new(2.0, 4.0, 4.0, 8.0);
assert!(relative_eq!(
expected_shift(m),
super::wilkinson_shift(m.m11, m.m22, m.m12)
));
}
}