forked from M-Labs/nalgebra
277 lines
9.7 KiB
Rust
277 lines
9.7 KiB
Rust
#![cfg(feature = "arbitrary")]
|
||
#![allow(non_snake_case)]
|
||
|
||
use na::{Isometry3, Point3, Similarity3, Translation3, UnitQuaternion, Vector3};
|
||
|
||
quickcheck!(
|
||
fn inverse_is_identity(i: Similarity3<f64>, p: Point3<f64>, v: Vector3<f64>) -> bool {
|
||
let ii = i.inverse();
|
||
|
||
relative_eq!(i * ii, Similarity3::identity(), epsilon = 1.0e-7)
|
||
&& relative_eq!(ii * i, Similarity3::identity(), epsilon = 1.0e-7)
|
||
&& relative_eq!((i * ii) * p, p, epsilon = 1.0e-7)
|
||
&& relative_eq!((ii * i) * p, p, epsilon = 1.0e-7)
|
||
&& relative_eq!((i * ii) * v, v, epsilon = 1.0e-7)
|
||
&& relative_eq!((ii * i) * v, v, epsilon = 1.0e-7)
|
||
}
|
||
|
||
fn inverse_is_parts_inversion(
|
||
t: Translation3<f64>,
|
||
r: UnitQuaternion<f64>,
|
||
scaling: f64
|
||
) -> bool
|
||
{
|
||
if relative_eq!(scaling, 0.0) {
|
||
true
|
||
} else {
|
||
let s = Similarity3::from_isometry(t * r, scaling);
|
||
s.inverse() == Similarity3::from_scaling(1.0 / scaling) * r.inverse() * t.inverse()
|
||
}
|
||
}
|
||
|
||
fn multiply_equals_alga_transform(
|
||
s: Similarity3<f64>,
|
||
v: Vector3<f64>,
|
||
p: Point3<f64>
|
||
) -> bool
|
||
{
|
||
s * v == s.transform_vector(&v)
|
||
&& s * p == s.transform_point(&p)
|
||
&& relative_eq!(
|
||
s.inverse() * v,
|
||
s.inverse_transform_vector(&v),
|
||
epsilon = 1.0e-7
|
||
)
|
||
&& relative_eq!(
|
||
s.inverse() * p,
|
||
s.inverse_transform_point(&p),
|
||
epsilon = 1.0e-7
|
||
)
|
||
}
|
||
|
||
fn composition(
|
||
i: Isometry3<f64>,
|
||
uq: UnitQuaternion<f64>,
|
||
t: Translation3<f64>,
|
||
v: Vector3<f64>,
|
||
p: Point3<f64>,
|
||
scaling: f64
|
||
) -> bool
|
||
{
|
||
if relative_eq!(scaling, 0.0) {
|
||
return true;
|
||
}
|
||
|
||
let s = Similarity3::from_scaling(scaling);
|
||
|
||
// (rotation × translation × scaling) × point = rotation × (translation × (scaling × point))
|
||
relative_eq!((uq * t * s) * v, uq * (scaling * v), epsilon = 1.0e-7) &&
|
||
relative_eq!((uq * t * s) * p, uq * (t * (scaling * p)), epsilon = 1.0e-7) &&
|
||
|
||
// (translation × rotation × scaling) × point = translation × (rotation × (scaling × point))
|
||
relative_eq!((t * uq * s) * v, uq * (scaling * v), epsilon = 1.0e-7) &&
|
||
relative_eq!((t * uq * s) * p, t * (uq * (scaling * p)), epsilon = 1.0e-7) &&
|
||
|
||
// (rotation × isometry × scaling) × point = rotation × (isometry × (scaling × point))
|
||
relative_eq!((uq * i * s) * v, uq * (i * (scaling * v)), epsilon = 1.0e-7) &&
|
||
relative_eq!((uq * i * s) * p, uq * (i * (scaling * p)), epsilon = 1.0e-7) &&
|
||
|
||
// (isometry × rotation × scaling) × point = isometry × (rotation × (scaling × point))
|
||
relative_eq!((i * uq * s) * v, i * (uq * (scaling * v)), epsilon = 1.0e-7) &&
|
||
relative_eq!((i * uq * s) * p, i * (uq * (scaling * p)), epsilon = 1.0e-7) &&
|
||
|
||
// (translation × isometry × scaling) × point = translation × (isometry × (scaling × point))
|
||
relative_eq!((t * i * s) * v, (i * (scaling * v)), epsilon = 1.0e-7) &&
|
||
relative_eq!((t * i * s) * p, t * (i * (scaling * p)), epsilon = 1.0e-7) &&
|
||
|
||
// (isometry × translation × scaling) × point = isometry × (translation × (scaling × point))
|
||
relative_eq!((i * t * s) * v, i * (scaling * v), epsilon = 1.0e-7) &&
|
||
relative_eq!((i * t * s) * p, i * (t * (scaling * p)), epsilon = 1.0e-7) &&
|
||
|
||
|
||
/*
|
||
* Same as before but with scaling on the middle.
|
||
*/
|
||
// (rotation × scaling × translation) × point = rotation × (scaling × (translation × point))
|
||
relative_eq!((uq * s * t) * v, uq * (scaling * v), epsilon = 1.0e-7) &&
|
||
relative_eq!((uq * s * t) * p, uq * (scaling * (t * p)), epsilon = 1.0e-7) &&
|
||
|
||
// (translation × scaling × rotation) × point = translation × (scaling × (rotation × point))
|
||
relative_eq!((t * s * uq) * v, scaling * (uq * v), epsilon = 1.0e-7) &&
|
||
relative_eq!((t * s * uq) * p, t * (scaling * (uq * p)), epsilon = 1.0e-7) &&
|
||
|
||
// (rotation × scaling × isometry) × point = rotation × (scaling × (isometry × point))
|
||
relative_eq!((uq * s * i) * v, uq * (scaling * (i * v)), epsilon = 1.0e-7) &&
|
||
relative_eq!((uq * s * i) * p, uq * (scaling * (i * p)), epsilon = 1.0e-7) &&
|
||
|
||
// (isometry × scaling × rotation) × point = isometry × (scaling × (rotation × point))
|
||
relative_eq!((i * s * uq) * v, i * (scaling * (uq * v)), epsilon = 1.0e-7) &&
|
||
relative_eq!((i * s * uq) * p, i * (scaling * (uq * p)), epsilon = 1.0e-7) &&
|
||
|
||
// (translation × scaling × isometry) × point = translation × (scaling × (isometry × point))
|
||
relative_eq!((t * s * i) * v, (scaling * (i * v)), epsilon = 1.0e-7) &&
|
||
relative_eq!((t * s * i) * p, t * (scaling * (i * p)), epsilon = 1.0e-7) &&
|
||
|
||
// (isometry × scaling × translation) × point = isometry × (scaling × (translation × point))
|
||
relative_eq!((i * s * t) * v, i * (scaling * v), epsilon = 1.0e-7) &&
|
||
relative_eq!((i * s * t) * p, i * (scaling * (t * p)), epsilon = 1.0e-7) &&
|
||
|
||
|
||
/*
|
||
* Same as before but with scaling on the left.
|
||
*/
|
||
// (scaling × rotation × translation) × point = scaling × (rotation × (translation × point))
|
||
relative_eq!((s * uq * t) * v, scaling * (uq * v), epsilon = 1.0e-7) &&
|
||
relative_eq!((s * uq * t) * p, scaling * (uq * (t * p)), epsilon = 1.0e-7) &&
|
||
|
||
// (scaling × translation × rotation) × point = scaling × (translation × (rotation × point))
|
||
relative_eq!((s * t * uq) * v, scaling * (uq * v), epsilon = 1.0e-7) &&
|
||
relative_eq!((s * t * uq) * p, scaling * (t * (uq * p)), epsilon = 1.0e-7) &&
|
||
|
||
// (scaling × rotation × isometry) × point = scaling × (rotation × (isometry × point))
|
||
relative_eq!((s * uq * i) * v, scaling * (uq * (i * v)), epsilon = 1.0e-7) &&
|
||
relative_eq!((s * uq * i) * p, scaling * (uq * (i * p)), epsilon = 1.0e-7) &&
|
||
|
||
// (scaling × isometry × rotation) × point = scaling × (isometry × (rotation × point))
|
||
relative_eq!((s * i * uq) * v, scaling * (i * (uq * v)), epsilon = 1.0e-7) &&
|
||
relative_eq!((s * i * uq) * p, scaling * (i * (uq * p)), epsilon = 1.0e-7) &&
|
||
|
||
// (scaling × translation × isometry) × point = scaling × (translation × (isometry × point))
|
||
relative_eq!((s * t * i) * v, (scaling * (i * v)), epsilon = 1.0e-7) &&
|
||
relative_eq!((s * t * i) * p, scaling * (t * (i * p)), epsilon = 1.0e-7) &&
|
||
|
||
// (scaling × isometry × translation) × point = scaling × (isometry × (translation × point))
|
||
relative_eq!((s * i * t) * v, scaling * (i * v), epsilon = 1.0e-7) &&
|
||
relative_eq!((s * i * t) * p, scaling * (i * (t * p)), epsilon = 1.0e-7)
|
||
}
|
||
|
||
fn all_op_exist(
|
||
s: Similarity3<f64>,
|
||
i: Isometry3<f64>,
|
||
uq: UnitQuaternion<f64>,
|
||
t: Translation3<f64>,
|
||
v: Vector3<f64>,
|
||
p: Point3<f64>
|
||
) -> bool
|
||
{
|
||
let sMs = s * s;
|
||
let sMuq = s * uq;
|
||
let sDs = s / s;
|
||
let sDuq = s / uq;
|
||
|
||
let sMp = s * p;
|
||
let sMv = s * v;
|
||
|
||
let sMt = s * t;
|
||
let tMs = t * s;
|
||
|
||
let uqMs = uq * s;
|
||
let uqDs = uq / s;
|
||
|
||
let sMi = s * i;
|
||
let sDi = s / i;
|
||
|
||
let iMs = i * s;
|
||
let iDs = i / s;
|
||
|
||
let mut sMt1 = s;
|
||
let mut sMt2 = s;
|
||
|
||
let mut sMs1 = s;
|
||
let mut sMs2 = s;
|
||
|
||
let mut sMuq1 = s;
|
||
let mut sMuq2 = s;
|
||
|
||
let mut sMi1 = s;
|
||
let mut sMi2 = s;
|
||
|
||
let mut sDs1 = s;
|
||
let mut sDs2 = s;
|
||
|
||
let mut sDuq1 = s;
|
||
let mut sDuq2 = s;
|
||
|
||
let mut sDi1 = s;
|
||
let mut sDi2 = s;
|
||
|
||
sMt1 *= t;
|
||
sMt2 *= &t;
|
||
|
||
sMs1 *= s;
|
||
sMs2 *= &s;
|
||
|
||
sMuq1 *= uq;
|
||
sMuq2 *= &uq;
|
||
|
||
sMi1 *= i;
|
||
sMi2 *= &i;
|
||
|
||
sDs1 /= s;
|
||
sDs2 /= &s;
|
||
|
||
sDuq1 /= uq;
|
||
sDuq2 /= &uq;
|
||
|
||
sDi1 /= i;
|
||
sDi2 /= &i;
|
||
|
||
sMt == sMt1
|
||
&& sMt == sMt2
|
||
&& sMs == sMs1
|
||
&& sMs == sMs2
|
||
&& sMuq == sMuq1
|
||
&& sMuq == sMuq2
|
||
&& sMi == sMi1
|
||
&& sMi == sMi2
|
||
&& sDs == sDs1
|
||
&& sDs == sDs2
|
||
&& sDuq == sDuq1
|
||
&& sDuq == sDuq2
|
||
&& sDi == sDi1
|
||
&& sDi == sDi2
|
||
&& sMs == &s * &s
|
||
&& sMs == s * &s
|
||
&& sMs == &s * s
|
||
&& sMuq == &s * &uq
|
||
&& sMuq == s * &uq
|
||
&& sMuq == &s * uq
|
||
&& sDs == &s / &s
|
||
&& sDs == s / &s
|
||
&& sDs == &s / s
|
||
&& sDuq == &s / &uq
|
||
&& sDuq == s / &uq
|
||
&& sDuq == &s / uq
|
||
&& sMp == &s * &p
|
||
&& sMp == s * &p
|
||
&& sMp == &s * p
|
||
&& sMv == &s * &v
|
||
&& sMv == s * &v
|
||
&& sMv == &s * v
|
||
&& sMt == &s * &t
|
||
&& sMt == s * &t
|
||
&& sMt == &s * t
|
||
&& tMs == &t * &s
|
||
&& tMs == t * &s
|
||
&& tMs == &t * s
|
||
&& uqMs == &uq * &s
|
||
&& uqMs == uq * &s
|
||
&& uqMs == &uq * s
|
||
&& uqDs == &uq / &s
|
||
&& uqDs == uq / &s
|
||
&& uqDs == &uq / s
|
||
&& sMi == &s * &i
|
||
&& sMi == s * &i
|
||
&& sMi == &s * i
|
||
&& sDi == &s / &i
|
||
&& sDi == s / &i
|
||
&& sDi == &s / i
|
||
&& iMs == &i * &s
|
||
&& iMs == i * &s
|
||
&& iMs == &i * s
|
||
&& iDs == &i / &s
|
||
&& iDs == i / &s
|
||
&& iDs == &i / s
|
||
}
|
||
);
|