forked from M-Labs/nalgebra
224 lines
7.6 KiB
Rust
224 lines
7.6 KiB
Rust
use na::{Quaternion, RealField, UnitQuaternion, Vector2, Vector3};
|
|
|
|
#[test]
|
|
fn angle_2() {
|
|
let a = Vector2::new(4.0, 0.0);
|
|
let b = Vector2::new(9.0, 0.0);
|
|
|
|
assert_eq!(a.angle(&b), 0.0);
|
|
}
|
|
|
|
#[test]
|
|
fn angle_3() {
|
|
let a = Vector3::new(4.0, 0.0, 0.5);
|
|
let b = Vector3::new(8.0, 0.0, 1.0);
|
|
|
|
assert_eq!(a.angle(&b), 0.0);
|
|
}
|
|
|
|
#[test]
|
|
fn quaternion_euler_angles_issue_494() {
|
|
let quat = UnitQuaternion::from_quaternion(Quaternion::new(
|
|
-0.10405792,
|
|
-0.6993922f32,
|
|
-0.10406871,
|
|
0.69942284,
|
|
));
|
|
let angs = quat.euler_angles();
|
|
assert_eq!(angs.0, 2.8461843);
|
|
assert_eq!(angs.1, f32::frac_pi_2());
|
|
assert_eq!(angs.2, 0.0);
|
|
}
|
|
|
|
#[cfg(feature = "arbitrary")]
|
|
mod quickcheck_tests {
|
|
use alga::general::RealField;
|
|
use na::{self, Rotation2, Rotation3, Unit, Vector2, Vector3};
|
|
use std::f64;
|
|
|
|
quickcheck! {
|
|
/*
|
|
*
|
|
* Euler angles.
|
|
*
|
|
*/
|
|
fn from_euler_angles(r: f64, p: f64, y: f64) -> bool {
|
|
let roll = Rotation3::from_euler_angles(r, 0.0, 0.0);
|
|
let pitch = Rotation3::from_euler_angles(0.0, p, 0.0);
|
|
let yaw = Rotation3::from_euler_angles(0.0, 0.0, y);
|
|
|
|
let rpy = Rotation3::from_euler_angles(r, p, y);
|
|
|
|
roll[(0, 0)] == 1.0 && // rotation wrt. x axis.
|
|
pitch[(1, 1)] == 1.0 && // rotation wrt. y axis.
|
|
yaw[(2, 2)] == 1.0 && // rotation wrt. z axis.
|
|
yaw * pitch * roll == rpy
|
|
}
|
|
|
|
fn euler_angles(r: f64, p: f64, y: f64) -> bool {
|
|
let rpy = Rotation3::from_euler_angles(r, p, y);
|
|
let (roll, pitch, yaw) = rpy.euler_angles();
|
|
relative_eq!(Rotation3::from_euler_angles(roll, pitch, yaw), rpy, epsilon = 1.0e-7)
|
|
}
|
|
|
|
fn euler_angles_gimble_lock(r: f64, y: f64) -> bool {
|
|
let pos = Rotation3::from_euler_angles(r, f64::frac_pi_2(), y);
|
|
let neg = Rotation3::from_euler_angles(r, -f64::frac_pi_2(), y);
|
|
let (pos_r, pos_p, pos_y) = pos.euler_angles();
|
|
let (neg_r, neg_p, neg_y) = neg.euler_angles();
|
|
relative_eq!(Rotation3::from_euler_angles(pos_r, pos_p, pos_y), pos, epsilon = 1.0e-7) &&
|
|
relative_eq!(Rotation3::from_euler_angles(neg_r, neg_p, neg_y), neg, epsilon = 1.0e-7)
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Inversion is transposition.
|
|
*
|
|
*/
|
|
fn rotation_inv_3(a: Rotation3<f64>) -> bool {
|
|
let ta = a.transpose();
|
|
let ia = a.inverse();
|
|
|
|
ta == ia &&
|
|
relative_eq!(&ta * &a, Rotation3::identity(), epsilon = 1.0e-7) &&
|
|
relative_eq!(&ia * a, Rotation3::identity(), epsilon = 1.0e-7) &&
|
|
relative_eq!( a * &ta, Rotation3::identity(), epsilon = 1.0e-7) &&
|
|
relative_eq!( a * ia, Rotation3::identity(), epsilon = 1.0e-7)
|
|
}
|
|
|
|
fn rotation_inv_2(a: Rotation2<f64>) -> bool {
|
|
let ta = a.transpose();
|
|
let ia = a.inverse();
|
|
|
|
ta == ia &&
|
|
relative_eq!(&ta * &a, Rotation2::identity(), epsilon = 1.0e-7) &&
|
|
relative_eq!(&ia * a, Rotation2::identity(), epsilon = 1.0e-7) &&
|
|
relative_eq!( a * &ta, Rotation2::identity(), epsilon = 1.0e-7) &&
|
|
relative_eq!( a * ia, Rotation2::identity(), epsilon = 1.0e-7)
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Angle between vectors.
|
|
*
|
|
*/
|
|
fn angle_is_commutative_2(a: Vector2<f64>, b: Vector2<f64>) -> bool {
|
|
a.angle(&b) == b.angle(&a)
|
|
}
|
|
|
|
fn angle_is_commutative_3(a: Vector3<f64>, b: Vector3<f64>) -> bool {
|
|
a.angle(&b) == b.angle(&a)
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Rotation matrix between vectors.
|
|
*
|
|
*/
|
|
fn rotation_between_is_anticommutative_2(a: Vector2<f64>, b: Vector2<f64>) -> bool {
|
|
let rab = Rotation2::rotation_between(&a, &b);
|
|
let rba = Rotation2::rotation_between(&b, &a);
|
|
|
|
relative_eq!(rab * rba, Rotation2::identity())
|
|
}
|
|
|
|
fn rotation_between_is_anticommutative_3(a: Vector3<f64>, b: Vector3<f64>) -> bool {
|
|
let rots = (Rotation3::rotation_between(&a, &b), Rotation3::rotation_between(&b, &a));
|
|
if let (Some(rab), Some(rba)) = rots {
|
|
relative_eq!(rab * rba, Rotation3::identity(), epsilon = 1.0e-7)
|
|
}
|
|
else {
|
|
true
|
|
}
|
|
}
|
|
|
|
fn rotation_between_is_identity(v2: Vector2<f64>, v3: Vector3<f64>) -> bool {
|
|
let vv2 = 3.42 * v2;
|
|
let vv3 = 4.23 * v3;
|
|
|
|
relative_eq!(v2.angle(&vv2), 0.0, epsilon = 1.0e-7) &&
|
|
relative_eq!(v3.angle(&vv3), 0.0, epsilon = 1.0e-7) &&
|
|
relative_eq!(Rotation2::rotation_between(&v2, &vv2), Rotation2::identity()) &&
|
|
Rotation3::rotation_between(&v3, &vv3).unwrap() == Rotation3::identity()
|
|
}
|
|
|
|
fn rotation_between_2(a: Vector2<f64>, b: Vector2<f64>) -> bool {
|
|
if !relative_eq!(a.angle(&b), 0.0, epsilon = 1.0e-7) {
|
|
let r = Rotation2::rotation_between(&a, &b);
|
|
relative_eq!((r * a).angle(&b), 0.0, epsilon = 1.0e-7)
|
|
}
|
|
else {
|
|
true
|
|
}
|
|
}
|
|
|
|
fn rotation_between_3(a: Vector3<f64>, b: Vector3<f64>) -> bool {
|
|
if !relative_eq!(a.angle(&b), 0.0, epsilon = 1.0e-7) {
|
|
let r = Rotation3::rotation_between(&a, &b).unwrap();
|
|
relative_eq!((r * a).angle(&b), 0.0, epsilon = 1.0e-7)
|
|
}
|
|
else {
|
|
true
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
*
|
|
* Rotation construction.
|
|
*
|
|
*/
|
|
fn new_rotation_2(angle: f64) -> bool {
|
|
let r = Rotation2::new(angle);
|
|
|
|
let angle = na::wrap(angle, -f64::pi(), f64::pi());
|
|
relative_eq!(r.angle(), angle, epsilon = 1.0e-7)
|
|
}
|
|
|
|
fn new_rotation_3(axisangle: Vector3<f64>) -> bool {
|
|
let r = Rotation3::new(axisangle);
|
|
|
|
if let Some((axis, angle)) = Unit::try_new_and_get(axisangle, 0.0) {
|
|
let angle = na::wrap(angle, -f64::pi(), f64::pi());
|
|
(relative_eq!(r.angle(), angle, epsilon = 1.0e-7) &&
|
|
relative_eq!(r.axis().unwrap(), axis, epsilon = 1.0e-7)) ||
|
|
(relative_eq!(r.angle(), -angle, epsilon = 1.0e-7) &&
|
|
relative_eq!(r.axis().unwrap(), -axis, epsilon = 1.0e-7))
|
|
}
|
|
else {
|
|
r == Rotation3::identity()
|
|
}
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Rotation pow.
|
|
*
|
|
*/
|
|
fn powf_rotation_2(angle: f64, pow: f64) -> bool {
|
|
let r = Rotation2::new(angle).powf(pow);
|
|
|
|
let angle = na::wrap(angle, -f64::pi(), f64::pi());
|
|
let pangle = na::wrap(angle * pow, -f64::pi(), f64::pi());
|
|
relative_eq!(r.angle(), pangle, epsilon = 1.0e-7)
|
|
}
|
|
|
|
fn powf_rotation_3(axisangle: Vector3<f64>, pow: f64) -> bool {
|
|
let r = Rotation3::new(axisangle).powf(pow);
|
|
|
|
if let Some((axis, angle)) = Unit::try_new_and_get(axisangle, 0.0) {
|
|
let angle = na::wrap(angle, -f64::pi(), f64::pi());
|
|
let pangle = na::wrap(angle * pow, -f64::pi(), f64::pi());
|
|
|
|
(relative_eq!(r.angle(), pangle, epsilon = 1.0e-7) &&
|
|
relative_eq!(r.axis().unwrap(), axis, epsilon = 1.0e-7)) ||
|
|
(relative_eq!(r.angle(), -pangle, epsilon = 1.0e-7) &&
|
|
relative_eq!(r.axis().unwrap(), -axis, epsilon = 1.0e-7))
|
|
}
|
|
else {
|
|
r == Rotation3::identity()
|
|
}
|
|
}
|
|
}
|
|
}
|