nalgebra/src/geometry/point.rs
2023-07-09 11:36:44 +02:00

511 lines
14 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use approx::{AbsDiffEq, RelativeEq, UlpsEq};
use num::{One, Zero};
use std::cmp::Ordering;
use std::fmt;
use std::hash;
#[cfg(feature = "rkyv-serialize")]
use rkyv::bytecheck;
#[cfg(feature = "serde-serialize-no-std")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};
use simba::simd::SimdPartialOrd;
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
use crate::base::iter::{MatrixIter, MatrixIterMut};
use crate::base::{Const, DefaultAllocator, OVector, Scalar};
use simba::scalar::{ClosedAdd, ClosedMul, ClosedSub};
use std::mem::MaybeUninit;
/// A point in an euclidean space.
///
/// The difference between a point and a vector is only semantic. See [the user guide](https://www.nalgebra.org/docs/user_guide/points_and_transformations)
/// for details on the distinction. The most notable difference that vectors ignore translations.
/// In particular, an [`Isometry2`](crate::Isometry2) or [`Isometry3`](crate::Isometry3) will
/// transform points by applying a rotation and a translation on them. However, these isometries
/// will only apply rotations to vectors (when doing `isometry * vector`, the translation part of
/// the isometry is ignored).
///
/// # Construction
/// * [From individual components <span style="float:right;">`new`…</span>](#construction-from-individual-components)
/// * [Swizzling <span style="float:right;">`xx`, `yxz`…</span>](#swizzling)
/// * [Other construction methods <span style="float:right;">`origin`, `from_slice`, `from_homogeneous`…</span>](#other-construction-methods)
///
/// # Transformation
/// Transforming a point by an [Isometry](crate::Isometry), [rotation](crate::Rotation), etc. can be
/// achieved by multiplication, e.g., `isometry * point` or `rotation * point`. Some of these transformation
/// may have some other methods, e.g., `isometry.inverse_transform_point(&point)`. See the documentation
/// of said transformations for details.
#[repr(C)]
#[derive(Clone)]
#[cfg_attr(feature = "rkyv-serialize", derive(bytecheck::CheckBytes))]
#[cfg_attr(
feature = "rkyv-serialize-no-std",
derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize),
archive(
as = "OPoint<T::Archived, D>",
bound(archive = "
T: rkyv::Archive,
T::Archived: Scalar,
OVector<T, D>: rkyv::Archive<Archived = OVector<T::Archived, D>>,
DefaultAllocator: Allocator<T::Archived, D>,
")
)
)]
pub struct OPoint<T: Scalar, D: DimName>
where
DefaultAllocator: Allocator<T, D>,
{
/// The coordinates of this point, i.e., the shift from the origin.
pub coords: OVector<T, D>,
}
impl<T: Scalar + fmt::Debug, D: DimName> fmt::Debug for OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
{
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
self.coords.as_slice().fmt(formatter)
}
}
impl<T: Scalar + hash::Hash, D: DimName> hash::Hash for OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
{
fn hash<H: hash::Hasher>(&self, state: &mut H) {
self.coords.hash(state)
}
}
impl<T: Scalar + Copy, D: DimName> Copy for OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
OVector<T, D>: Copy,
{
}
#[cfg(feature = "cuda")]
unsafe impl<T: Scalar + cust_core::DeviceCopy, D: DimName> cust_core::DeviceCopy for OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
OVector<T, D>: cust_core::DeviceCopy,
{
}
#[cfg(feature = "bytemuck")]
unsafe impl<T: Scalar, D: DimName> bytemuck::Zeroable for OPoint<T, D>
where
OVector<T, D>: bytemuck::Zeroable,
DefaultAllocator: Allocator<T, D>,
{
}
#[cfg(feature = "bytemuck")]
unsafe impl<T: Scalar, D: DimName> bytemuck::Pod for OPoint<T, D>
where
T: Copy,
OVector<T, D>: bytemuck::Pod,
DefaultAllocator: Allocator<T, D>,
{
}
#[cfg(feature = "serde-serialize-no-std")]
impl<T: Scalar, D: DimName> Serialize for OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
<DefaultAllocator as Allocator<T, D>>::Buffer: Serialize,
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
self.coords.serialize(serializer)
}
}
#[cfg(feature = "serde-serialize-no-std")]
impl<'a, T: Scalar, D: DimName> Deserialize<'a> for OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
<DefaultAllocator as Allocator<T, D>>::Buffer: Deserialize<'a>,
{
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
where
Des: Deserializer<'a>,
{
let coords = OVector::<T, D>::deserialize(deserializer)?;
Ok(Self::from(coords))
}
}
impl<T: Scalar, D: DimName> OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
{
/// Returns a point containing the result of `f` applied to each of its entries.
///
/// # Example
/// ```
/// # use nalgebra::{Point2, Point3};
/// let p = Point2::new(1.0, 2.0);
/// assert_eq!(p.map(|e| e * 10.0), Point2::new(10.0, 20.0));
///
/// // This works in any dimension.
/// let p = Point3::new(1.1, 2.1, 3.1);
/// assert_eq!(p.map(|e| e as u32), Point3::new(1, 2, 3));
/// ```
#[inline]
#[must_use]
pub fn map<T2: Scalar, F: FnMut(T) -> T2>(&self, f: F) -> OPoint<T2, D>
where
DefaultAllocator: Allocator<T2, D>,
{
self.coords.map(f).into()
}
/// Replaces each component of `self` by the result of a closure `f` applied on it.
///
/// # Example
/// ```
/// # use nalgebra::{Point2, Point3};
/// let mut p = Point2::new(1.0, 2.0);
/// p.apply(|e| *e = *e * 10.0);
/// assert_eq!(p, Point2::new(10.0, 20.0));
///
/// // This works in any dimension.
/// let mut p = Point3::new(1.0, 2.0, 3.0);
/// p.apply(|e| *e = *e * 10.0);
/// assert_eq!(p, Point3::new(10.0, 20.0, 30.0));
/// ```
#[inline]
pub fn apply<F: FnMut(&mut T)>(&mut self, f: F) {
self.coords.apply(f)
}
/// Converts this point into a vector in homogeneous coordinates, i.e., appends a `1` at the
/// end of it.
///
/// This is the same as `.into()`.
///
/// # Example
/// ```
/// # use nalgebra::{Point2, Point3, Vector3, Vector4};
/// let p = Point2::new(10.0, 20.0);
/// assert_eq!(p.to_homogeneous(), Vector3::new(10.0, 20.0, 1.0));
///
/// // This works in any dimension.
/// let p = Point3::new(10.0, 20.0, 30.0);
/// assert_eq!(p.to_homogeneous(), Vector4::new(10.0, 20.0, 30.0, 1.0));
/// ```
#[inline]
#[must_use]
pub fn to_homogeneous(&self) -> OVector<T, DimNameSum<D, U1>>
where
T: One,
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<D, U1>>,
{
// TODO: this is mostly a copy-past from Vector::push.
// But we cant use Vector::push because of the DimAdd bound
// (which we dont use because we use DimNameAdd).
// We should find a way to re-use Vector::push.
let len = self.len();
let mut res = crate::Matrix::uninit(DimNameSum::<D, U1>::name(), Const::<1>);
// This is basically a copy_from except that we warp the copied
// values into MaybeUninit.
res.generic_view_mut((0, 0), self.coords.shape_generic())
.zip_apply(&self.coords, |out, e| *out = MaybeUninit::new(e));
res[(len, 0)] = MaybeUninit::new(T::one());
// Safety: res has been fully initialized.
unsafe { res.assume_init() }
}
/// Linear interpolation between two points.
///
/// Returns `self * (1.0 - t) + rhs.coords * t`, i.e., the linear blend of the points
/// `self` and `rhs` using the scalar value `t`.
///
/// The value for a is not restricted to the range `[0, 1]`.
///
/// # Examples:
///
/// ```
/// # use nalgebra::Point3;
/// let a = Point3::new(1.0, 2.0, 3.0);
/// let b = Point3::new(10.0, 20.0, 30.0);
/// assert_eq!(a.lerp(&b, 0.1), Point3::new(1.9, 3.8, 5.7));
/// ```
#[must_use]
pub fn lerp(&self, rhs: &OPoint<T, D>, t: T) -> OPoint<T, D>
where
T: Scalar + Zero + One + ClosedAdd + ClosedSub + ClosedMul,
{
OPoint {
coords: self.coords.lerp(&rhs.coords, t),
}
}
/// Creates a new point with the given coordinates.
#[deprecated(note = "Use Point::from(vector) instead.")]
#[inline]
pub fn from_coordinates(coords: OVector<T, D>) -> Self {
Self { coords }
}
/// The dimension of this point.
///
/// # Example
/// ```
/// # use nalgebra::{Point2, Point3};
/// let p = Point2::new(1.0, 2.0);
/// assert_eq!(p.len(), 2);
///
/// // This works in any dimension.
/// let p = Point3::new(10.0, 20.0, 30.0);
/// assert_eq!(p.len(), 3);
/// ```
#[inline]
#[must_use]
pub fn len(&self) -> usize {
self.coords.len()
}
/// Returns true if the point contains no elements.
///
/// # Example
/// ```
/// # use nalgebra::{Point2, Point3};
/// let p = Point2::new(1.0, 2.0);
/// assert!(!p.is_empty());
/// ```
#[inline]
#[must_use]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// The stride of this point. This is the number of buffer element separating each component of
/// this point.
#[inline]
#[deprecated(note = "This methods is no longer significant and will always return 1.")]
pub fn stride(&self) -> usize {
self.coords.strides().0
}
/// Iterates through this point coordinates.
///
/// # Example
/// ```
/// # use nalgebra::Point3;
/// let p = Point3::new(1.0, 2.0, 3.0);
/// let mut it = p.iter().cloned();
///
/// assert_eq!(it.next(), Some(1.0));
/// assert_eq!(it.next(), Some(2.0));
/// assert_eq!(it.next(), Some(3.0));
/// assert_eq!(it.next(), None);
/// ```
#[inline]
pub fn iter(
&self,
) -> MatrixIter<'_, T, D, Const<1>, <DefaultAllocator as Allocator<T, D>>::Buffer> {
self.coords.iter()
}
/// Gets a reference to i-th element of this point without bound-checking.
#[inline]
#[must_use]
pub unsafe fn get_unchecked(&self, i: usize) -> &T {
self.coords.vget_unchecked(i)
}
/// Mutably iterates through this point coordinates.
///
/// # Example
/// ```
/// # use nalgebra::Point3;
/// let mut p = Point3::new(1.0, 2.0, 3.0);
///
/// for e in p.iter_mut() {
/// *e *= 10.0;
/// }
///
/// assert_eq!(p, Point3::new(10.0, 20.0, 30.0));
/// ```
#[inline]
pub fn iter_mut(
&mut self,
) -> MatrixIterMut<'_, T, D, Const<1>, <DefaultAllocator as Allocator<T, D>>::Buffer> {
self.coords.iter_mut()
}
/// Gets a mutable reference to i-th element of this point without bound-checking.
#[inline]
#[must_use]
pub unsafe fn get_unchecked_mut(&mut self, i: usize) -> &mut T {
self.coords.vget_unchecked_mut(i)
}
/// Swaps two entries without bound-checking.
#[inline]
pub unsafe fn swap_unchecked(&mut self, i1: usize, i2: usize) {
self.coords.swap_unchecked((i1, 0), (i2, 0))
}
}
impl<T: Scalar + AbsDiffEq, D: DimName> AbsDiffEq for OPoint<T, D>
where
T::Epsilon: Clone,
DefaultAllocator: Allocator<T, D>,
{
type Epsilon = T::Epsilon;
#[inline]
fn default_epsilon() -> Self::Epsilon {
T::default_epsilon()
}
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.coords.abs_diff_eq(&other.coords, epsilon)
}
}
impl<T: Scalar + RelativeEq, D: DimName> RelativeEq for OPoint<T, D>
where
T::Epsilon: Clone,
DefaultAllocator: Allocator<T, D>,
{
#[inline]
fn default_max_relative() -> Self::Epsilon {
T::default_max_relative()
}
#[inline]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
self.coords
.relative_eq(&other.coords, epsilon, max_relative)
}
}
impl<T: Scalar + UlpsEq, D: DimName> UlpsEq for OPoint<T, D>
where
T::Epsilon: Clone,
DefaultAllocator: Allocator<T, D>,
{
#[inline]
fn default_max_ulps() -> u32 {
T::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.coords.ulps_eq(&other.coords, epsilon, max_ulps)
}
}
impl<T: Scalar + Eq, D: DimName> Eq for OPoint<T, D> where DefaultAllocator: Allocator<T, D> {}
impl<T: Scalar, D: DimName> PartialEq for OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
{
#[inline]
fn eq(&self, right: &Self) -> bool {
self.coords == right.coords
}
}
impl<T: Scalar + PartialOrd, D: DimName> PartialOrd for OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
{
#[inline]
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.coords.partial_cmp(&other.coords)
}
#[inline]
fn lt(&self, right: &Self) -> bool {
self.coords.lt(&right.coords)
}
#[inline]
fn le(&self, right: &Self) -> bool {
self.coords.le(&right.coords)
}
#[inline]
fn gt(&self, right: &Self) -> bool {
self.coords.gt(&right.coords)
}
#[inline]
fn ge(&self, right: &Self) -> bool {
self.coords.ge(&right.coords)
}
}
/*
* inf/sup
*/
impl<T: Scalar + SimdPartialOrd, D: DimName> OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
{
/// Computes the infimum (aka. componentwise min) of two points.
#[inline]
#[must_use]
pub fn inf(&self, other: &Self) -> OPoint<T, D> {
self.coords.inf(&other.coords).into()
}
/// Computes the supremum (aka. componentwise max) of two points.
#[inline]
#[must_use]
pub fn sup(&self, other: &Self) -> OPoint<T, D> {
self.coords.sup(&other.coords).into()
}
/// Computes the (infimum, supremum) of two points.
#[inline]
#[must_use]
pub fn inf_sup(&self, other: &Self) -> (OPoint<T, D>, OPoint<T, D>) {
let (inf, sup) = self.coords.inf_sup(&other.coords);
(inf.into(), sup.into())
}
}
/*
*
* Display
*
*/
impl<T: Scalar + fmt::Display, D: DimName> fmt::Display for OPoint<T, D>
where
DefaultAllocator: Allocator<T, D>,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{{")?;
let mut it = self.coords.iter();
write!(f, "{}", *it.next().unwrap())?;
for comp in it {
write!(f, ", {}", *comp)?;
}
write!(f, "}}")
}
}