forked from M-Labs/nalgebra
511 lines
14 KiB
Rust
511 lines
14 KiB
Rust
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
|
||
use num::{One, Zero};
|
||
use std::cmp::Ordering;
|
||
use std::fmt;
|
||
use std::hash;
|
||
|
||
#[cfg(feature = "rkyv-serialize")]
|
||
use rkyv::bytecheck;
|
||
#[cfg(feature = "serde-serialize-no-std")]
|
||
use serde::{Deserialize, Deserializer, Serialize, Serializer};
|
||
|
||
use simba::simd::SimdPartialOrd;
|
||
|
||
use crate::base::allocator::Allocator;
|
||
use crate::base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
|
||
use crate::base::iter::{MatrixIter, MatrixIterMut};
|
||
use crate::base::{Const, DefaultAllocator, OVector, Scalar};
|
||
use simba::scalar::{ClosedAdd, ClosedMul, ClosedSub};
|
||
use std::mem::MaybeUninit;
|
||
|
||
/// A point in an euclidean space.
|
||
///
|
||
/// The difference between a point and a vector is only semantic. See [the user guide](https://www.nalgebra.org/docs/user_guide/points_and_transformations)
|
||
/// for details on the distinction. The most notable difference that vectors ignore translations.
|
||
/// In particular, an [`Isometry2`](crate::Isometry2) or [`Isometry3`](crate::Isometry3) will
|
||
/// transform points by applying a rotation and a translation on them. However, these isometries
|
||
/// will only apply rotations to vectors (when doing `isometry * vector`, the translation part of
|
||
/// the isometry is ignored).
|
||
///
|
||
/// # Construction
|
||
/// * [From individual components <span style="float:right;">`new`…</span>](#construction-from-individual-components)
|
||
/// * [Swizzling <span style="float:right;">`xx`, `yxz`…</span>](#swizzling)
|
||
/// * [Other construction methods <span style="float:right;">`origin`, `from_slice`, `from_homogeneous`…</span>](#other-construction-methods)
|
||
///
|
||
/// # Transformation
|
||
/// Transforming a point by an [Isometry](crate::Isometry), [rotation](crate::Rotation), etc. can be
|
||
/// achieved by multiplication, e.g., `isometry * point` or `rotation * point`. Some of these transformation
|
||
/// may have some other methods, e.g., `isometry.inverse_transform_point(&point)`. See the documentation
|
||
/// of said transformations for details.
|
||
#[repr(C)]
|
||
#[derive(Clone)]
|
||
#[cfg_attr(feature = "rkyv-serialize", derive(bytecheck::CheckBytes))]
|
||
#[cfg_attr(
|
||
feature = "rkyv-serialize-no-std",
|
||
derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize),
|
||
archive(
|
||
as = "OPoint<T::Archived, D>",
|
||
bound(archive = "
|
||
T: rkyv::Archive,
|
||
T::Archived: Scalar,
|
||
OVector<T, D>: rkyv::Archive<Archived = OVector<T::Archived, D>>,
|
||
DefaultAllocator: Allocator<T::Archived, D>,
|
||
")
|
||
)
|
||
)]
|
||
pub struct OPoint<T: Scalar, D: DimName>
|
||
where
|
||
DefaultAllocator: Allocator<T, D>,
|
||
{
|
||
/// The coordinates of this point, i.e., the shift from the origin.
|
||
pub coords: OVector<T, D>,
|
||
}
|
||
|
||
impl<T: Scalar + fmt::Debug, D: DimName> fmt::Debug for OPoint<T, D>
|
||
where
|
||
DefaultAllocator: Allocator<T, D>,
|
||
{
|
||
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
|
||
self.coords.as_slice().fmt(formatter)
|
||
}
|
||
}
|
||
|
||
impl<T: Scalar + hash::Hash, D: DimName> hash::Hash for OPoint<T, D>
|
||
where
|
||
DefaultAllocator: Allocator<T, D>,
|
||
{
|
||
fn hash<H: hash::Hasher>(&self, state: &mut H) {
|
||
self.coords.hash(state)
|
||
}
|
||
}
|
||
|
||
impl<T: Scalar + Copy, D: DimName> Copy for OPoint<T, D>
|
||
where
|
||
DefaultAllocator: Allocator<T, D>,
|
||
OVector<T, D>: Copy,
|
||
{
|
||
}
|
||
|
||
#[cfg(feature = "cuda")]
|
||
unsafe impl<T: Scalar + cust_core::DeviceCopy, D: DimName> cust_core::DeviceCopy for OPoint<T, D>
|
||
where
|
||
DefaultAllocator: Allocator<T, D>,
|
||
OVector<T, D>: cust_core::DeviceCopy,
|
||
{
|
||
}
|
||
|
||
#[cfg(feature = "bytemuck")]
|
||
unsafe impl<T: Scalar, D: DimName> bytemuck::Zeroable for OPoint<T, D>
|
||
where
|
||
OVector<T, D>: bytemuck::Zeroable,
|
||
DefaultAllocator: Allocator<T, D>,
|
||
{
|
||
}
|
||
|
||
#[cfg(feature = "bytemuck")]
|
||
unsafe impl<T: Scalar, D: DimName> bytemuck::Pod for OPoint<T, D>
|
||
where
|
||
T: Copy,
|
||
OVector<T, D>: bytemuck::Pod,
|
||
DefaultAllocator: Allocator<T, D>,
|
||
{
|
||
}
|
||
|
||
#[cfg(feature = "serde-serialize-no-std")]
|
||
impl<T: Scalar, D: DimName> Serialize for OPoint<T, D>
|
||
where
|
||
DefaultAllocator: Allocator<T, D>,
|
||
<DefaultAllocator as Allocator<T, D>>::Buffer: Serialize,
|
||
{
|
||
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
||
where
|
||
S: Serializer,
|
||
{
|
||
self.coords.serialize(serializer)
|
||
}
|
||
}
|
||
|
||
#[cfg(feature = "serde-serialize-no-std")]
|
||
impl<'a, T: Scalar, D: DimName> Deserialize<'a> for OPoint<T, D>
|
||
where
|
||
DefaultAllocator: Allocator<T, D>,
|
||
<DefaultAllocator as Allocator<T, D>>::Buffer: Deserialize<'a>,
|
||
{
|
||
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
|
||
where
|
||
Des: Deserializer<'a>,
|
||
{
|
||
let coords = OVector::<T, D>::deserialize(deserializer)?;
|
||
|
||
Ok(Self::from(coords))
|
||
}
|
||
}
|
||
|
||
impl<T: Scalar, D: DimName> OPoint<T, D>
|
||
where
|
||
DefaultAllocator: Allocator<T, D>,
|
||
{
|
||
/// Returns a point containing the result of `f` applied to each of its entries.
|
||
///
|
||
/// # Example
|
||
/// ```
|
||
/// # use nalgebra::{Point2, Point3};
|
||
/// let p = Point2::new(1.0, 2.0);
|
||
/// assert_eq!(p.map(|e| e * 10.0), Point2::new(10.0, 20.0));
|
||
///
|
||
/// // This works in any dimension.
|
||
/// let p = Point3::new(1.1, 2.1, 3.1);
|
||
/// assert_eq!(p.map(|e| e as u32), Point3::new(1, 2, 3));
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
pub fn map<T2: Scalar, F: FnMut(T) -> T2>(&self, f: F) -> OPoint<T2, D>
|
||
where
|
||
DefaultAllocator: Allocator<T2, D>,
|
||
{
|
||
self.coords.map(f).into()
|
||
}
|
||
|
||
/// Replaces each component of `self` by the result of a closure `f` applied on it.
|
||
///
|
||
/// # Example
|
||
/// ```
|
||
/// # use nalgebra::{Point2, Point3};
|
||
/// let mut p = Point2::new(1.0, 2.0);
|
||
/// p.apply(|e| *e = *e * 10.0);
|
||
/// assert_eq!(p, Point2::new(10.0, 20.0));
|
||
///
|
||
/// // This works in any dimension.
|
||
/// let mut p = Point3::new(1.0, 2.0, 3.0);
|
||
/// p.apply(|e| *e = *e * 10.0);
|
||
/// assert_eq!(p, Point3::new(10.0, 20.0, 30.0));
|
||
/// ```
|
||
#[inline]
|
||
pub fn apply<F: FnMut(&mut T)>(&mut self, f: F) {
|
||
self.coords.apply(f)
|
||
}
|
||
|
||
/// Converts this point into a vector in homogeneous coordinates, i.e., appends a `1` at the
|
||
/// end of it.
|
||
///
|
||
/// This is the same as `.into()`.
|
||
///
|
||
/// # Example
|
||
/// ```
|
||
/// # use nalgebra::{Point2, Point3, Vector3, Vector4};
|
||
/// let p = Point2::new(10.0, 20.0);
|
||
/// assert_eq!(p.to_homogeneous(), Vector3::new(10.0, 20.0, 1.0));
|
||
///
|
||
/// // This works in any dimension.
|
||
/// let p = Point3::new(10.0, 20.0, 30.0);
|
||
/// assert_eq!(p.to_homogeneous(), Vector4::new(10.0, 20.0, 30.0, 1.0));
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
pub fn to_homogeneous(&self) -> OVector<T, DimNameSum<D, U1>>
|
||
where
|
||
T: One,
|
||
D: DimNameAdd<U1>,
|
||
DefaultAllocator: Allocator<T, DimNameSum<D, U1>>,
|
||
{
|
||
// TODO: this is mostly a copy-past from Vector::push.
|
||
// But we can’t use Vector::push because of the DimAdd bound
|
||
// (which we don’t use because we use DimNameAdd).
|
||
// We should find a way to re-use Vector::push.
|
||
let len = self.len();
|
||
let mut res = crate::Matrix::uninit(DimNameSum::<D, U1>::name(), Const::<1>);
|
||
// This is basically a copy_from except that we warp the copied
|
||
// values into MaybeUninit.
|
||
res.generic_view_mut((0, 0), self.coords.shape_generic())
|
||
.zip_apply(&self.coords, |out, e| *out = MaybeUninit::new(e));
|
||
res[(len, 0)] = MaybeUninit::new(T::one());
|
||
|
||
// Safety: res has been fully initialized.
|
||
unsafe { res.assume_init() }
|
||
}
|
||
|
||
/// Linear interpolation between two points.
|
||
///
|
||
/// Returns `self * (1.0 - t) + rhs.coords * t`, i.e., the linear blend of the points
|
||
/// `self` and `rhs` using the scalar value `t`.
|
||
///
|
||
/// The value for a is not restricted to the range `[0, 1]`.
|
||
///
|
||
/// # Examples:
|
||
///
|
||
/// ```
|
||
/// # use nalgebra::Point3;
|
||
/// let a = Point3::new(1.0, 2.0, 3.0);
|
||
/// let b = Point3::new(10.0, 20.0, 30.0);
|
||
/// assert_eq!(a.lerp(&b, 0.1), Point3::new(1.9, 3.8, 5.7));
|
||
/// ```
|
||
#[must_use]
|
||
pub fn lerp(&self, rhs: &OPoint<T, D>, t: T) -> OPoint<T, D>
|
||
where
|
||
T: Scalar + Zero + One + ClosedAdd + ClosedSub + ClosedMul,
|
||
{
|
||
OPoint {
|
||
coords: self.coords.lerp(&rhs.coords, t),
|
||
}
|
||
}
|
||
|
||
/// Creates a new point with the given coordinates.
|
||
#[deprecated(note = "Use Point::from(vector) instead.")]
|
||
#[inline]
|
||
pub fn from_coordinates(coords: OVector<T, D>) -> Self {
|
||
Self { coords }
|
||
}
|
||
|
||
/// The dimension of this point.
|
||
///
|
||
/// # Example
|
||
/// ```
|
||
/// # use nalgebra::{Point2, Point3};
|
||
/// let p = Point2::new(1.0, 2.0);
|
||
/// assert_eq!(p.len(), 2);
|
||
///
|
||
/// // This works in any dimension.
|
||
/// let p = Point3::new(10.0, 20.0, 30.0);
|
||
/// assert_eq!(p.len(), 3);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
pub fn len(&self) -> usize {
|
||
self.coords.len()
|
||
}
|
||
|
||
/// Returns true if the point contains no elements.
|
||
///
|
||
/// # Example
|
||
/// ```
|
||
/// # use nalgebra::{Point2, Point3};
|
||
/// let p = Point2::new(1.0, 2.0);
|
||
/// assert!(!p.is_empty());
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
pub fn is_empty(&self) -> bool {
|
||
self.len() == 0
|
||
}
|
||
|
||
/// The stride of this point. This is the number of buffer element separating each component of
|
||
/// this point.
|
||
#[inline]
|
||
#[deprecated(note = "This methods is no longer significant and will always return 1.")]
|
||
pub fn stride(&self) -> usize {
|
||
self.coords.strides().0
|
||
}
|
||
|
||
/// Iterates through this point coordinates.
|
||
///
|
||
/// # Example
|
||
/// ```
|
||
/// # use nalgebra::Point3;
|
||
/// let p = Point3::new(1.0, 2.0, 3.0);
|
||
/// let mut it = p.iter().cloned();
|
||
///
|
||
/// assert_eq!(it.next(), Some(1.0));
|
||
/// assert_eq!(it.next(), Some(2.0));
|
||
/// assert_eq!(it.next(), Some(3.0));
|
||
/// assert_eq!(it.next(), None);
|
||
/// ```
|
||
#[inline]
|
||
pub fn iter(
|
||
&self,
|
||
) -> MatrixIter<'_, T, D, Const<1>, <DefaultAllocator as Allocator<T, D>>::Buffer> {
|
||
self.coords.iter()
|
||
}
|
||
|
||
/// Gets a reference to i-th element of this point without bound-checking.
|
||
#[inline]
|
||
#[must_use]
|
||
pub unsafe fn get_unchecked(&self, i: usize) -> &T {
|
||
self.coords.vget_unchecked(i)
|
||
}
|
||
|
||
/// Mutably iterates through this point coordinates.
|
||
///
|
||
/// # Example
|
||
/// ```
|
||
/// # use nalgebra::Point3;
|
||
/// let mut p = Point3::new(1.0, 2.0, 3.0);
|
||
///
|
||
/// for e in p.iter_mut() {
|
||
/// *e *= 10.0;
|
||
/// }
|
||
///
|
||
/// assert_eq!(p, Point3::new(10.0, 20.0, 30.0));
|
||
/// ```
|
||
#[inline]
|
||
pub fn iter_mut(
|
||
&mut self,
|
||
) -> MatrixIterMut<'_, T, D, Const<1>, <DefaultAllocator as Allocator<T, D>>::Buffer> {
|
||
self.coords.iter_mut()
|
||
}
|
||
|
||
/// Gets a mutable reference to i-th element of this point without bound-checking.
|
||
#[inline]
|
||
#[must_use]
|
||
pub unsafe fn get_unchecked_mut(&mut self, i: usize) -> &mut T {
|
||
self.coords.vget_unchecked_mut(i)
|
||
}
|
||
|
||
/// Swaps two entries without bound-checking.
|
||
#[inline]
|
||
pub unsafe fn swap_unchecked(&mut self, i1: usize, i2: usize) {
|
||
self.coords.swap_unchecked((i1, 0), (i2, 0))
|
||
}
|
||
}
|
||
|
||
impl<T: Scalar + AbsDiffEq, D: DimName> AbsDiffEq for OPoint<T, D>
|
||
where
|
||
T::Epsilon: Clone,
|
||
DefaultAllocator: Allocator<T, D>,
|
||
{
|
||
type Epsilon = T::Epsilon;
|
||
|
||
#[inline]
|
||
fn default_epsilon() -> Self::Epsilon {
|
||
T::default_epsilon()
|
||
}
|
||
|
||
#[inline]
|
||
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
|
||
self.coords.abs_diff_eq(&other.coords, epsilon)
|
||
}
|
||
}
|
||
|
||
impl<T: Scalar + RelativeEq, D: DimName> RelativeEq for OPoint<T, D>
|
||
where
|
||
T::Epsilon: Clone,
|
||
DefaultAllocator: Allocator<T, D>,
|
||
{
|
||
#[inline]
|
||
fn default_max_relative() -> Self::Epsilon {
|
||
T::default_max_relative()
|
||
}
|
||
|
||
#[inline]
|
||
fn relative_eq(
|
||
&self,
|
||
other: &Self,
|
||
epsilon: Self::Epsilon,
|
||
max_relative: Self::Epsilon,
|
||
) -> bool {
|
||
self.coords
|
||
.relative_eq(&other.coords, epsilon, max_relative)
|
||
}
|
||
}
|
||
|
||
impl<T: Scalar + UlpsEq, D: DimName> UlpsEq for OPoint<T, D>
|
||
where
|
||
T::Epsilon: Clone,
|
||
DefaultAllocator: Allocator<T, D>,
|
||
{
|
||
#[inline]
|
||
fn default_max_ulps() -> u32 {
|
||
T::default_max_ulps()
|
||
}
|
||
|
||
#[inline]
|
||
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
|
||
self.coords.ulps_eq(&other.coords, epsilon, max_ulps)
|
||
}
|
||
}
|
||
|
||
impl<T: Scalar + Eq, D: DimName> Eq for OPoint<T, D> where DefaultAllocator: Allocator<T, D> {}
|
||
|
||
impl<T: Scalar, D: DimName> PartialEq for OPoint<T, D>
|
||
where
|
||
DefaultAllocator: Allocator<T, D>,
|
||
{
|
||
#[inline]
|
||
fn eq(&self, right: &Self) -> bool {
|
||
self.coords == right.coords
|
||
}
|
||
}
|
||
|
||
impl<T: Scalar + PartialOrd, D: DimName> PartialOrd for OPoint<T, D>
|
||
where
|
||
DefaultAllocator: Allocator<T, D>,
|
||
{
|
||
#[inline]
|
||
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
||
self.coords.partial_cmp(&other.coords)
|
||
}
|
||
|
||
#[inline]
|
||
fn lt(&self, right: &Self) -> bool {
|
||
self.coords.lt(&right.coords)
|
||
}
|
||
|
||
#[inline]
|
||
fn le(&self, right: &Self) -> bool {
|
||
self.coords.le(&right.coords)
|
||
}
|
||
|
||
#[inline]
|
||
fn gt(&self, right: &Self) -> bool {
|
||
self.coords.gt(&right.coords)
|
||
}
|
||
|
||
#[inline]
|
||
fn ge(&self, right: &Self) -> bool {
|
||
self.coords.ge(&right.coords)
|
||
}
|
||
}
|
||
|
||
/*
|
||
* inf/sup
|
||
*/
|
||
impl<T: Scalar + SimdPartialOrd, D: DimName> OPoint<T, D>
|
||
where
|
||
DefaultAllocator: Allocator<T, D>,
|
||
{
|
||
/// Computes the infimum (aka. componentwise min) of two points.
|
||
#[inline]
|
||
#[must_use]
|
||
pub fn inf(&self, other: &Self) -> OPoint<T, D> {
|
||
self.coords.inf(&other.coords).into()
|
||
}
|
||
|
||
/// Computes the supremum (aka. componentwise max) of two points.
|
||
#[inline]
|
||
#[must_use]
|
||
pub fn sup(&self, other: &Self) -> OPoint<T, D> {
|
||
self.coords.sup(&other.coords).into()
|
||
}
|
||
|
||
/// Computes the (infimum, supremum) of two points.
|
||
#[inline]
|
||
#[must_use]
|
||
pub fn inf_sup(&self, other: &Self) -> (OPoint<T, D>, OPoint<T, D>) {
|
||
let (inf, sup) = self.coords.inf_sup(&other.coords);
|
||
(inf.into(), sup.into())
|
||
}
|
||
}
|
||
|
||
/*
|
||
*
|
||
* Display
|
||
*
|
||
*/
|
||
impl<T: Scalar + fmt::Display, D: DimName> fmt::Display for OPoint<T, D>
|
||
where
|
||
DefaultAllocator: Allocator<T, D>,
|
||
{
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
write!(f, "{{")?;
|
||
|
||
let mut it = self.coords.iter();
|
||
|
||
write!(f, "{}", *it.next().unwrap())?;
|
||
|
||
for comp in it {
|
||
write!(f, ", {}", *comp)?;
|
||
}
|
||
|
||
write!(f, "}}")
|
||
}
|
||
}
|