forked from M-Labs/nalgebra
571 lines
21 KiB
Rust
571 lines
21 KiB
Rust
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
|
||
use std::fmt;
|
||
use std::hash;
|
||
|
||
#[cfg(feature = "serde-serialize-no-std")]
|
||
use serde::{Deserialize, Serialize};
|
||
|
||
use simba::scalar::{RealField, SubsetOf};
|
||
use simba::simd::SimdRealField;
|
||
|
||
use crate::base::allocator::Allocator;
|
||
use crate::base::dimension::{DimNameAdd, DimNameSum, U1};
|
||
use crate::base::storage::Owned;
|
||
use crate::base::{Const, DefaultAllocator, OMatrix, SVector, Scalar, Unit};
|
||
use crate::geometry::{AbstractRotation, Point, Translation};
|
||
|
||
#[cfg(feature = "rkyv-serialize")]
|
||
use rkyv::bytecheck;
|
||
|
||
/// A direct isometry, i.e., a rotation followed by a translation (aka. a rigid-body motion).
|
||
///
|
||
/// This is also known as an element of a Special Euclidean (SE) group.
|
||
/// The `Isometry` type can either represent a 2D or 3D isometry.
|
||
/// A 2D isometry is composed of:
|
||
/// - A translation part of type [`Translation2`](crate::Translation2)
|
||
/// - A rotation part which can either be a [`UnitComplex`](crate::UnitComplex) or a [`Rotation2`](crate::Rotation2).
|
||
///
|
||
/// A 3D isometry is composed of:
|
||
/// - A translation part of type [`Translation3`](crate::Translation3)
|
||
/// - A rotation part which can either be a [`UnitQuaternion`](crate::UnitQuaternion) or a [`Rotation3`](crate::Rotation3).
|
||
///
|
||
/// Note that instead of using the [`Isometry`](crate::Isometry) type in your code directly, you should use one
|
||
/// of its aliases: [`Isometry2`](crate::Isometry2), [`Isometry3`](crate::Isometry3),
|
||
/// [`IsometryMatrix2`](crate::IsometryMatrix2), [`IsometryMatrix3`](crate::IsometryMatrix3). Though
|
||
/// keep in mind that all the documentation of all the methods of these aliases will also appears on
|
||
/// this page.
|
||
///
|
||
/// # Construction
|
||
/// * [From a 2D vector and/or an angle <span style="float:right;">`new`, `translation`, `rotation`…</span>](#construction-from-a-2d-vector-andor-a-rotation-angle)
|
||
/// * [From a 3D vector and/or an axis-angle <span style="float:right;">`new`, `translation`, `rotation`…</span>](#construction-from-a-3d-vector-andor-an-axis-angle)
|
||
/// * [From a 3D eye position and target point <span style="float:right;">`look_at`, `look_at_lh`, `face_towards`…</span>](#construction-from-a-3d-eye-position-and-target-point)
|
||
/// * [From the translation and rotation parts <span style="float:right;">`from_parts`…</span>](#from-the-translation-and-rotation-parts)
|
||
///
|
||
/// # Transformation and composition
|
||
/// Note that transforming vectors and points can be done by multiplication, e.g., `isometry * point`.
|
||
/// Composing an isometry with another transformation can also be done by multiplication or division.
|
||
///
|
||
/// * [Transformation of a vector or a point <span style="float:right;">`transform_vector`, `inverse_transform_point`…</span>](#transformation-of-a-vector-or-a-point)
|
||
/// * [Inversion and in-place composition <span style="float:right;">`inverse`, `append_rotation_wrt_point_mut`…</span>](#inversion-and-in-place-composition)
|
||
/// * [Interpolation <span style="float:right;">`lerp_slerp`…</span>](#interpolation)
|
||
///
|
||
/// # Conversion to a matrix
|
||
/// * [Conversion to a matrix <span style="float:right;">`to_matrix`…</span>](#conversion-to-a-matrix)
|
||
///
|
||
#[repr(C)]
|
||
#[derive(Debug, Copy, Clone)]
|
||
#[cfg_attr(feature = "cuda", derive(cust_core::DeviceCopy))]
|
||
#[cfg_attr(feature = "serde-serialize-no-std", derive(Serialize, Deserialize))]
|
||
#[cfg_attr(
|
||
feature = "serde-serialize-no-std",
|
||
serde(bound(serialize = "R: Serialize,
|
||
DefaultAllocator: Allocator<T, Const<D>>,
|
||
Owned<T, Const<D>>: Serialize,
|
||
T: Scalar"))
|
||
)]
|
||
#[cfg_attr(
|
||
feature = "serde-serialize-no-std",
|
||
serde(bound(deserialize = "R: Deserialize<'de>,
|
||
DefaultAllocator: Allocator<T, Const<D>>,
|
||
Owned<T, Const<D>>: Deserialize<'de>,
|
||
T: Scalar"))
|
||
)]
|
||
#[cfg_attr(feature = "rkyv-serialize", derive(bytecheck::CheckBytes))]
|
||
#[cfg_attr(
|
||
feature = "rkyv-serialize-no-std",
|
||
derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize),
|
||
archive(
|
||
as = "Isometry<T::Archived, R::Archived, D>",
|
||
bound(archive = "
|
||
T: rkyv::Archive,
|
||
R: rkyv::Archive,
|
||
Translation<T, D>: rkyv::Archive<Archived = Translation<T::Archived, D>>
|
||
")
|
||
)
|
||
)]
|
||
pub struct Isometry<T, R, const D: usize> {
|
||
/// The pure rotational part of this isometry.
|
||
pub rotation: R,
|
||
/// The pure translational part of this isometry.
|
||
pub translation: Translation<T, D>,
|
||
}
|
||
|
||
impl<T: Scalar + hash::Hash, R: hash::Hash, const D: usize> hash::Hash for Isometry<T, R, D>
|
||
where
|
||
Owned<T, Const<D>>: hash::Hash,
|
||
{
|
||
fn hash<H: hash::Hasher>(&self, state: &mut H) {
|
||
self.translation.hash(state);
|
||
self.rotation.hash(state);
|
||
}
|
||
}
|
||
|
||
/// # From the translation and rotation parts
|
||
impl<T: Scalar, R: AbstractRotation<T, D>, const D: usize> Isometry<T, R, D> {
|
||
/// Creates a new isometry from its rotational and translational parts.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```
|
||
/// # #[macro_use] extern crate approx;
|
||
/// # use std::f32;
|
||
/// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3, Point3};
|
||
/// let tra = Translation3::new(0.0, 0.0, 3.0);
|
||
/// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::PI);
|
||
/// let iso = Isometry3::from_parts(tra, rot);
|
||
///
|
||
/// assert_relative_eq!(iso * Point3::new(1.0, 2.0, 3.0), Point3::new(-1.0, 2.0, 0.0), epsilon = 1.0e-6);
|
||
/// ```
|
||
#[inline]
|
||
pub fn from_parts(translation: Translation<T, D>, rotation: R) -> Self {
|
||
Self {
|
||
rotation,
|
||
translation,
|
||
}
|
||
}
|
||
}
|
||
|
||
/// # Inversion and in-place composition
|
||
impl<T: SimdRealField, R: AbstractRotation<T, D>, const D: usize> Isometry<T, R, D>
|
||
where
|
||
T::Element: SimdRealField,
|
||
{
|
||
/// Inverts `self`.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```
|
||
/// # use std::f32;
|
||
/// # use nalgebra::{Isometry2, Point2, Vector2};
|
||
/// let iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
|
||
/// let inv = iso.inverse();
|
||
/// let pt = Point2::new(1.0, 2.0);
|
||
///
|
||
/// assert_eq!(inv * (iso * pt), pt);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use = "Did you mean to use inverse_mut()?"]
|
||
pub fn inverse(&self) -> Self {
|
||
let mut res = self.clone();
|
||
res.inverse_mut();
|
||
res
|
||
}
|
||
|
||
/// Inverts `self` in-place.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```
|
||
/// # use std::f32;
|
||
/// # use nalgebra::{Isometry2, Point2, Vector2};
|
||
/// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
|
||
/// let pt = Point2::new(1.0, 2.0);
|
||
/// let transformed_pt = iso * pt;
|
||
/// iso.inverse_mut();
|
||
///
|
||
/// assert_eq!(iso * transformed_pt, pt);
|
||
/// ```
|
||
#[inline]
|
||
pub fn inverse_mut(&mut self) {
|
||
self.rotation.inverse_mut();
|
||
self.translation.inverse_mut();
|
||
self.translation.vector = self.rotation.transform_vector(&self.translation.vector);
|
||
}
|
||
|
||
/// Computes `self.inverse() * rhs` in a more efficient way.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```
|
||
/// # use std::f32;
|
||
/// # use nalgebra::{Isometry2, Point2, Vector2};
|
||
/// let mut iso1 = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
|
||
/// let mut iso2 = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_4);
|
||
///
|
||
/// assert_eq!(iso1.inverse() * iso2, iso1.inv_mul(&iso2));
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
pub fn inv_mul(&self, rhs: &Isometry<T, R, D>) -> Self {
|
||
let inv_rot1 = self.rotation.inverse();
|
||
let tr_12 = &rhs.translation.vector - &self.translation.vector;
|
||
Isometry::from_parts(
|
||
inv_rot1.transform_vector(&tr_12).into(),
|
||
inv_rot1 * rhs.rotation.clone(),
|
||
)
|
||
}
|
||
|
||
/// Appends to `self` the given translation in-place.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```
|
||
/// # use std::f32;
|
||
/// # use nalgebra::{Isometry2, Translation2, Vector2};
|
||
/// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
|
||
/// let tra = Translation2::new(3.0, 4.0);
|
||
/// // Same as `iso = tra * iso`.
|
||
/// iso.append_translation_mut(&tra);
|
||
///
|
||
/// assert_eq!(iso.translation, Translation2::new(4.0, 6.0));
|
||
/// ```
|
||
#[inline]
|
||
pub fn append_translation_mut(&mut self, t: &Translation<T, D>) {
|
||
self.translation.vector += &t.vector
|
||
}
|
||
|
||
/// Appends to `self` the given rotation in-place.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```
|
||
/// # #[macro_use] extern crate approx;
|
||
/// # use std::f32;
|
||
/// # use nalgebra::{Isometry2, Translation2, UnitComplex, Vector2};
|
||
/// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::PI / 6.0);
|
||
/// let rot = UnitComplex::new(f32::consts::PI / 2.0);
|
||
/// // Same as `iso = rot * iso`.
|
||
/// iso.append_rotation_mut(&rot);
|
||
///
|
||
/// assert_relative_eq!(iso, Isometry2::new(Vector2::new(-2.0, 1.0), f32::consts::PI * 2.0 / 3.0), epsilon = 1.0e-6);
|
||
/// ```
|
||
#[inline]
|
||
pub fn append_rotation_mut(&mut self, r: &R) {
|
||
self.rotation = r.clone() * self.rotation.clone();
|
||
self.translation.vector = r.transform_vector(&self.translation.vector);
|
||
}
|
||
|
||
/// Appends in-place to `self` a rotation centered at the point `p`, i.e., the rotation that
|
||
/// lets `p` invariant.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```
|
||
/// # #[macro_use] extern crate approx;
|
||
/// # use std::f32;
|
||
/// # use nalgebra::{Isometry2, Translation2, UnitComplex, Vector2, Point2};
|
||
/// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
|
||
/// let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
|
||
/// let pt = Point2::new(1.0, 0.0);
|
||
/// iso.append_rotation_wrt_point_mut(&rot, &pt);
|
||
///
|
||
/// assert_relative_eq!(iso * pt, Point2::new(-2.0, 0.0), epsilon = 1.0e-6);
|
||
/// ```
|
||
#[inline]
|
||
pub fn append_rotation_wrt_point_mut(&mut self, r: &R, p: &Point<T, D>) {
|
||
self.translation.vector -= &p.coords;
|
||
self.append_rotation_mut(r);
|
||
self.translation.vector += &p.coords;
|
||
}
|
||
|
||
/// Appends in-place to `self` a rotation centered at the point with coordinates
|
||
/// `self.translation`.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```
|
||
/// # use std::f32;
|
||
/// # use nalgebra::{Isometry2, Translation2, UnitComplex, Vector2, Point2};
|
||
/// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
|
||
/// let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
|
||
/// iso.append_rotation_wrt_center_mut(&rot);
|
||
///
|
||
/// // The translation part should not have changed.
|
||
/// assert_eq!(iso.translation.vector, Vector2::new(1.0, 2.0));
|
||
/// assert_eq!(iso.rotation, UnitComplex::new(f32::consts::PI));
|
||
/// ```
|
||
#[inline]
|
||
pub fn append_rotation_wrt_center_mut(&mut self, r: &R) {
|
||
self.rotation = r.clone() * self.rotation.clone();
|
||
}
|
||
}
|
||
|
||
/// # Transformation of a vector or a point
|
||
impl<T: SimdRealField, R: AbstractRotation<T, D>, const D: usize> Isometry<T, R, D>
|
||
where
|
||
T::Element: SimdRealField,
|
||
{
|
||
/// Transform the given point by this isometry.
|
||
///
|
||
/// This is the same as the multiplication `self * pt`.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```
|
||
/// # #[macro_use] extern crate approx;
|
||
/// # use std::f32;
|
||
/// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3, Point3};
|
||
/// let tra = Translation3::new(0.0, 0.0, 3.0);
|
||
/// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
|
||
/// let iso = Isometry3::from_parts(tra, rot);
|
||
///
|
||
/// let transformed_point = iso.transform_point(&Point3::new(1.0, 2.0, 3.0));
|
||
/// assert_relative_eq!(transformed_point, Point3::new(3.0, 2.0, 2.0), epsilon = 1.0e-6);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
pub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D> {
|
||
self * pt
|
||
}
|
||
|
||
/// Transform the given vector by this isometry, ignoring the translation
|
||
/// component of the isometry.
|
||
///
|
||
/// This is the same as the multiplication `self * v`.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```
|
||
/// # #[macro_use] extern crate approx;
|
||
/// # use std::f32;
|
||
/// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3};
|
||
/// let tra = Translation3::new(0.0, 0.0, 3.0);
|
||
/// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
|
||
/// let iso = Isometry3::from_parts(tra, rot);
|
||
///
|
||
/// let transformed_point = iso.transform_vector(&Vector3::new(1.0, 2.0, 3.0));
|
||
/// assert_relative_eq!(transformed_point, Vector3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
pub fn transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D> {
|
||
self * v
|
||
}
|
||
|
||
/// Transform the given point by the inverse of this isometry. This may be
|
||
/// less expensive than computing the entire isometry inverse and then
|
||
/// transforming the point.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```
|
||
/// # #[macro_use] extern crate approx;
|
||
/// # use std::f32;
|
||
/// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3, Point3};
|
||
/// let tra = Translation3::new(0.0, 0.0, 3.0);
|
||
/// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
|
||
/// let iso = Isometry3::from_parts(tra, rot);
|
||
///
|
||
/// let transformed_point = iso.inverse_transform_point(&Point3::new(1.0, 2.0, 3.0));
|
||
/// assert_relative_eq!(transformed_point, Point3::new(0.0, 2.0, 1.0), epsilon = 1.0e-6);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
pub fn inverse_transform_point(&self, pt: &Point<T, D>) -> Point<T, D> {
|
||
self.rotation
|
||
.inverse_transform_point(&(pt - &self.translation.vector))
|
||
}
|
||
|
||
/// Transform the given vector by the inverse of this isometry, ignoring the
|
||
/// translation component of the isometry. This may be
|
||
/// less expensive than computing the entire isometry inverse and then
|
||
/// transforming the point.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```
|
||
/// # #[macro_use] extern crate approx;
|
||
/// # use std::f32;
|
||
/// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3};
|
||
/// let tra = Translation3::new(0.0, 0.0, 3.0);
|
||
/// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
|
||
/// let iso = Isometry3::from_parts(tra, rot);
|
||
///
|
||
/// let transformed_point = iso.inverse_transform_vector(&Vector3::new(1.0, 2.0, 3.0));
|
||
/// assert_relative_eq!(transformed_point, Vector3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
pub fn inverse_transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D> {
|
||
self.rotation.inverse_transform_vector(v)
|
||
}
|
||
|
||
/// Transform the given unit vector by the inverse of this isometry, ignoring the
|
||
/// translation component of the isometry. This may be
|
||
/// less expensive than computing the entire isometry inverse and then
|
||
/// transforming the point.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```
|
||
/// # #[macro_use] extern crate approx;
|
||
/// # use std::f32;
|
||
/// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3};
|
||
/// let tra = Translation3::new(0.0, 0.0, 3.0);
|
||
/// let rot = UnitQuaternion::from_scaled_axis(Vector3::z() * f32::consts::FRAC_PI_2);
|
||
/// let iso = Isometry3::from_parts(tra, rot);
|
||
///
|
||
/// let transformed_point = iso.inverse_transform_unit_vector(&Vector3::x_axis());
|
||
/// assert_relative_eq!(transformed_point, -Vector3::y_axis(), epsilon = 1.0e-6);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
pub fn inverse_transform_unit_vector(&self, v: &Unit<SVector<T, D>>) -> Unit<SVector<T, D>> {
|
||
self.rotation.inverse_transform_unit_vector(v)
|
||
}
|
||
}
|
||
|
||
// NOTE: we don't require `R: Rotation<...>` here because this is not useful for the implementation
|
||
// and makes it hard to use it, e.g., for Transform × Isometry implementation.
|
||
// This is OK since all constructors of the isometry enforce the Rotation bound already (and
|
||
// explicit struct construction is prevented by the dummy ZST field).
|
||
/// # Conversion to a matrix
|
||
impl<T: SimdRealField, R, const D: usize> Isometry<T, R, D> {
|
||
/// Converts this isometry into its equivalent homogeneous transformation matrix.
|
||
///
|
||
/// This is the same as `self.to_matrix()`.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```
|
||
/// # #[macro_use] extern crate approx;
|
||
/// # use std::f32;
|
||
/// # use nalgebra::{Isometry2, Vector2, Matrix3};
|
||
/// let iso = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_6);
|
||
/// let expected = Matrix3::new(0.8660254, -0.5, 10.0,
|
||
/// 0.5, 0.8660254, 20.0,
|
||
/// 0.0, 0.0, 1.0);
|
||
///
|
||
/// assert_relative_eq!(iso.to_homogeneous(), expected, epsilon = 1.0e-6);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
pub fn to_homogeneous(&self) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
|
||
where
|
||
Const<D>: DimNameAdd<U1>,
|
||
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
|
||
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
|
||
{
|
||
let mut res: OMatrix<T, _, _> = crate::convert_ref(&self.rotation);
|
||
res.fixed_view_mut::<D, 1>(0, D)
|
||
.copy_from(&self.translation.vector);
|
||
|
||
res
|
||
}
|
||
|
||
/// Converts this isometry into its equivalent homogeneous transformation matrix.
|
||
///
|
||
/// This is the same as `self.to_homogeneous()`.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```
|
||
/// # #[macro_use] extern crate approx;
|
||
/// # use std::f32;
|
||
/// # use nalgebra::{Isometry2, Vector2, Matrix3};
|
||
/// let iso = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_6);
|
||
/// let expected = Matrix3::new(0.8660254, -0.5, 10.0,
|
||
/// 0.5, 0.8660254, 20.0,
|
||
/// 0.0, 0.0, 1.0);
|
||
///
|
||
/// assert_relative_eq!(iso.to_matrix(), expected, epsilon = 1.0e-6);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
pub fn to_matrix(&self) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
|
||
where
|
||
Const<D>: DimNameAdd<U1>,
|
||
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
|
||
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
|
||
{
|
||
self.to_homogeneous()
|
||
}
|
||
}
|
||
|
||
impl<T: SimdRealField, R, const D: usize> Eq for Isometry<T, R, D> where
|
||
R: AbstractRotation<T, D> + Eq
|
||
{
|
||
}
|
||
|
||
impl<T: SimdRealField, R, const D: usize> PartialEq for Isometry<T, R, D>
|
||
where
|
||
R: AbstractRotation<T, D> + PartialEq,
|
||
{
|
||
#[inline]
|
||
fn eq(&self, right: &Self) -> bool {
|
||
self.translation == right.translation && self.rotation == right.rotation
|
||
}
|
||
}
|
||
|
||
impl<T: RealField, R, const D: usize> AbsDiffEq for Isometry<T, R, D>
|
||
where
|
||
R: AbstractRotation<T, D> + AbsDiffEq<Epsilon = T::Epsilon>,
|
||
T::Epsilon: Clone,
|
||
{
|
||
type Epsilon = T::Epsilon;
|
||
|
||
#[inline]
|
||
fn default_epsilon() -> Self::Epsilon {
|
||
T::default_epsilon()
|
||
}
|
||
|
||
#[inline]
|
||
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
|
||
self.translation
|
||
.abs_diff_eq(&other.translation, epsilon.clone())
|
||
&& self.rotation.abs_diff_eq(&other.rotation, epsilon)
|
||
}
|
||
}
|
||
|
||
impl<T: RealField, R, const D: usize> RelativeEq for Isometry<T, R, D>
|
||
where
|
||
R: AbstractRotation<T, D> + RelativeEq<Epsilon = T::Epsilon>,
|
||
T::Epsilon: Clone,
|
||
{
|
||
#[inline]
|
||
fn default_max_relative() -> Self::Epsilon {
|
||
T::default_max_relative()
|
||
}
|
||
|
||
#[inline]
|
||
fn relative_eq(
|
||
&self,
|
||
other: &Self,
|
||
epsilon: Self::Epsilon,
|
||
max_relative: Self::Epsilon,
|
||
) -> bool {
|
||
self.translation
|
||
.relative_eq(&other.translation, epsilon.clone(), max_relative.clone())
|
||
&& self
|
||
.rotation
|
||
.relative_eq(&other.rotation, epsilon, max_relative)
|
||
}
|
||
}
|
||
|
||
impl<T: RealField, R, const D: usize> UlpsEq for Isometry<T, R, D>
|
||
where
|
||
R: AbstractRotation<T, D> + UlpsEq<Epsilon = T::Epsilon>,
|
||
T::Epsilon: Clone,
|
||
{
|
||
#[inline]
|
||
fn default_max_ulps() -> u32 {
|
||
T::default_max_ulps()
|
||
}
|
||
|
||
#[inline]
|
||
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
|
||
self.translation
|
||
.ulps_eq(&other.translation, epsilon.clone(), max_ulps)
|
||
&& self.rotation.ulps_eq(&other.rotation, epsilon, max_ulps)
|
||
}
|
||
}
|
||
|
||
/*
|
||
*
|
||
* Display
|
||
*
|
||
*/
|
||
impl<T: RealField + fmt::Display, R, const D: usize> fmt::Display for Isometry<T, R, D>
|
||
where
|
||
R: fmt::Display,
|
||
{
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
let precision = f.precision().unwrap_or(3);
|
||
|
||
writeln!(f, "Isometry {{")?;
|
||
write!(f, "{:.*}", precision, self.translation)?;
|
||
write!(f, "{:.*}", precision, self.rotation)?;
|
||
writeln!(f, "}}")
|
||
}
|
||
}
|