nalgebra/src/geometry/isometry.rs
2023-07-09 11:36:44 +02:00

571 lines
21 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use approx::{AbsDiffEq, RelativeEq, UlpsEq};
use std::fmt;
use std::hash;
#[cfg(feature = "serde-serialize-no-std")]
use serde::{Deserialize, Serialize};
use simba::scalar::{RealField, SubsetOf};
use simba::simd::SimdRealField;
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimNameAdd, DimNameSum, U1};
use crate::base::storage::Owned;
use crate::base::{Const, DefaultAllocator, OMatrix, SVector, Scalar, Unit};
use crate::geometry::{AbstractRotation, Point, Translation};
#[cfg(feature = "rkyv-serialize")]
use rkyv::bytecheck;
/// A direct isometry, i.e., a rotation followed by a translation (aka. a rigid-body motion).
///
/// This is also known as an element of a Special Euclidean (SE) group.
/// The `Isometry` type can either represent a 2D or 3D isometry.
/// A 2D isometry is composed of:
/// - A translation part of type [`Translation2`](crate::Translation2)
/// - A rotation part which can either be a [`UnitComplex`](crate::UnitComplex) or a [`Rotation2`](crate::Rotation2).
///
/// A 3D isometry is composed of:
/// - A translation part of type [`Translation3`](crate::Translation3)
/// - A rotation part which can either be a [`UnitQuaternion`](crate::UnitQuaternion) or a [`Rotation3`](crate::Rotation3).
///
/// Note that instead of using the [`Isometry`](crate::Isometry) type in your code directly, you should use one
/// of its aliases: [`Isometry2`](crate::Isometry2), [`Isometry3`](crate::Isometry3),
/// [`IsometryMatrix2`](crate::IsometryMatrix2), [`IsometryMatrix3`](crate::IsometryMatrix3). Though
/// keep in mind that all the documentation of all the methods of these aliases will also appears on
/// this page.
///
/// # Construction
/// * [From a 2D vector and/or an angle <span style="float:right;">`new`, `translation`, `rotation`…</span>](#construction-from-a-2d-vector-andor-a-rotation-angle)
/// * [From a 3D vector and/or an axis-angle <span style="float:right;">`new`, `translation`, `rotation`…</span>](#construction-from-a-3d-vector-andor-an-axis-angle)
/// * [From a 3D eye position and target point <span style="float:right;">`look_at`, `look_at_lh`, `face_towards`…</span>](#construction-from-a-3d-eye-position-and-target-point)
/// * [From the translation and rotation parts <span style="float:right;">`from_parts`…</span>](#from-the-translation-and-rotation-parts)
///
/// # Transformation and composition
/// Note that transforming vectors and points can be done by multiplication, e.g., `isometry * point`.
/// Composing an isometry with another transformation can also be done by multiplication or division.
///
/// * [Transformation of a vector or a point <span style="float:right;">`transform_vector`, `inverse_transform_point`…</span>](#transformation-of-a-vector-or-a-point)
/// * [Inversion and in-place composition <span style="float:right;">`inverse`, `append_rotation_wrt_point_mut`…</span>](#inversion-and-in-place-composition)
/// * [Interpolation <span style="float:right;">`lerp_slerp`…</span>](#interpolation)
///
/// # Conversion to a matrix
/// * [Conversion to a matrix <span style="float:right;">`to_matrix`…</span>](#conversion-to-a-matrix)
///
#[repr(C)]
#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "cuda", derive(cust_core::DeviceCopy))]
#[cfg_attr(feature = "serde-serialize-no-std", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize-no-std",
serde(bound(serialize = "R: Serialize,
DefaultAllocator: Allocator<T, Const<D>>,
Owned<T, Const<D>>: Serialize,
T: Scalar"))
)]
#[cfg_attr(
feature = "serde-serialize-no-std",
serde(bound(deserialize = "R: Deserialize<'de>,
DefaultAllocator: Allocator<T, Const<D>>,
Owned<T, Const<D>>: Deserialize<'de>,
T: Scalar"))
)]
#[cfg_attr(feature = "rkyv-serialize", derive(bytecheck::CheckBytes))]
#[cfg_attr(
feature = "rkyv-serialize-no-std",
derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize),
archive(
as = "Isometry<T::Archived, R::Archived, D>",
bound(archive = "
T: rkyv::Archive,
R: rkyv::Archive,
Translation<T, D>: rkyv::Archive<Archived = Translation<T::Archived, D>>
")
)
)]
pub struct Isometry<T, R, const D: usize> {
/// The pure rotational part of this isometry.
pub rotation: R,
/// The pure translational part of this isometry.
pub translation: Translation<T, D>,
}
impl<T: Scalar + hash::Hash, R: hash::Hash, const D: usize> hash::Hash for Isometry<T, R, D>
where
Owned<T, Const<D>>: hash::Hash,
{
fn hash<H: hash::Hasher>(&self, state: &mut H) {
self.translation.hash(state);
self.rotation.hash(state);
}
}
/// # From the translation and rotation parts
impl<T: Scalar, R: AbstractRotation<T, D>, const D: usize> Isometry<T, R, D> {
/// Creates a new isometry from its rotational and translational parts.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3, Point3};
/// let tra = Translation3::new(0.0, 0.0, 3.0);
/// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::PI);
/// let iso = Isometry3::from_parts(tra, rot);
///
/// assert_relative_eq!(iso * Point3::new(1.0, 2.0, 3.0), Point3::new(-1.0, 2.0, 0.0), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn from_parts(translation: Translation<T, D>, rotation: R) -> Self {
Self {
rotation,
translation,
}
}
}
/// # Inversion and in-place composition
impl<T: SimdRealField, R: AbstractRotation<T, D>, const D: usize> Isometry<T, R, D>
where
T::Element: SimdRealField,
{
/// Inverts `self`.
///
/// # Example
///
/// ```
/// # use std::f32;
/// # use nalgebra::{Isometry2, Point2, Vector2};
/// let iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
/// let inv = iso.inverse();
/// let pt = Point2::new(1.0, 2.0);
///
/// assert_eq!(inv * (iso * pt), pt);
/// ```
#[inline]
#[must_use = "Did you mean to use inverse_mut()?"]
pub fn inverse(&self) -> Self {
let mut res = self.clone();
res.inverse_mut();
res
}
/// Inverts `self` in-place.
///
/// # Example
///
/// ```
/// # use std::f32;
/// # use nalgebra::{Isometry2, Point2, Vector2};
/// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
/// let pt = Point2::new(1.0, 2.0);
/// let transformed_pt = iso * pt;
/// iso.inverse_mut();
///
/// assert_eq!(iso * transformed_pt, pt);
/// ```
#[inline]
pub fn inverse_mut(&mut self) {
self.rotation.inverse_mut();
self.translation.inverse_mut();
self.translation.vector = self.rotation.transform_vector(&self.translation.vector);
}
/// Computes `self.inverse() * rhs` in a more efficient way.
///
/// # Example
///
/// ```
/// # use std::f32;
/// # use nalgebra::{Isometry2, Point2, Vector2};
/// let mut iso1 = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
/// let mut iso2 = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_4);
///
/// assert_eq!(iso1.inverse() * iso2, iso1.inv_mul(&iso2));
/// ```
#[inline]
#[must_use]
pub fn inv_mul(&self, rhs: &Isometry<T, R, D>) -> Self {
let inv_rot1 = self.rotation.inverse();
let tr_12 = &rhs.translation.vector - &self.translation.vector;
Isometry::from_parts(
inv_rot1.transform_vector(&tr_12).into(),
inv_rot1 * rhs.rotation.clone(),
)
}
/// Appends to `self` the given translation in-place.
///
/// # Example
///
/// ```
/// # use std::f32;
/// # use nalgebra::{Isometry2, Translation2, Vector2};
/// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
/// let tra = Translation2::new(3.0, 4.0);
/// // Same as `iso = tra * iso`.
/// iso.append_translation_mut(&tra);
///
/// assert_eq!(iso.translation, Translation2::new(4.0, 6.0));
/// ```
#[inline]
pub fn append_translation_mut(&mut self, t: &Translation<T, D>) {
self.translation.vector += &t.vector
}
/// Appends to `self` the given rotation in-place.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry2, Translation2, UnitComplex, Vector2};
/// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::PI / 6.0);
/// let rot = UnitComplex::new(f32::consts::PI / 2.0);
/// // Same as `iso = rot * iso`.
/// iso.append_rotation_mut(&rot);
///
/// assert_relative_eq!(iso, Isometry2::new(Vector2::new(-2.0, 1.0), f32::consts::PI * 2.0 / 3.0), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn append_rotation_mut(&mut self, r: &R) {
self.rotation = r.clone() * self.rotation.clone();
self.translation.vector = r.transform_vector(&self.translation.vector);
}
/// Appends in-place to `self` a rotation centered at the point `p`, i.e., the rotation that
/// lets `p` invariant.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry2, Translation2, UnitComplex, Vector2, Point2};
/// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
/// let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
/// let pt = Point2::new(1.0, 0.0);
/// iso.append_rotation_wrt_point_mut(&rot, &pt);
///
/// assert_relative_eq!(iso * pt, Point2::new(-2.0, 0.0), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn append_rotation_wrt_point_mut(&mut self, r: &R, p: &Point<T, D>) {
self.translation.vector -= &p.coords;
self.append_rotation_mut(r);
self.translation.vector += &p.coords;
}
/// Appends in-place to `self` a rotation centered at the point with coordinates
/// `self.translation`.
///
/// # Example
///
/// ```
/// # use std::f32;
/// # use nalgebra::{Isometry2, Translation2, UnitComplex, Vector2, Point2};
/// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
/// let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
/// iso.append_rotation_wrt_center_mut(&rot);
///
/// // The translation part should not have changed.
/// assert_eq!(iso.translation.vector, Vector2::new(1.0, 2.0));
/// assert_eq!(iso.rotation, UnitComplex::new(f32::consts::PI));
/// ```
#[inline]
pub fn append_rotation_wrt_center_mut(&mut self, r: &R) {
self.rotation = r.clone() * self.rotation.clone();
}
}
/// # Transformation of a vector or a point
impl<T: SimdRealField, R: AbstractRotation<T, D>, const D: usize> Isometry<T, R, D>
where
T::Element: SimdRealField,
{
/// Transform the given point by this isometry.
///
/// This is the same as the multiplication `self * pt`.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3, Point3};
/// let tra = Translation3::new(0.0, 0.0, 3.0);
/// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
/// let iso = Isometry3::from_parts(tra, rot);
///
/// let transformed_point = iso.transform_point(&Point3::new(1.0, 2.0, 3.0));
/// assert_relative_eq!(transformed_point, Point3::new(3.0, 2.0, 2.0), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D> {
self * pt
}
/// Transform the given vector by this isometry, ignoring the translation
/// component of the isometry.
///
/// This is the same as the multiplication `self * v`.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3};
/// let tra = Translation3::new(0.0, 0.0, 3.0);
/// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
/// let iso = Isometry3::from_parts(tra, rot);
///
/// let transformed_point = iso.transform_vector(&Vector3::new(1.0, 2.0, 3.0));
/// assert_relative_eq!(transformed_point, Vector3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D> {
self * v
}
/// Transform the given point by the inverse of this isometry. This may be
/// less expensive than computing the entire isometry inverse and then
/// transforming the point.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3, Point3};
/// let tra = Translation3::new(0.0, 0.0, 3.0);
/// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
/// let iso = Isometry3::from_parts(tra, rot);
///
/// let transformed_point = iso.inverse_transform_point(&Point3::new(1.0, 2.0, 3.0));
/// assert_relative_eq!(transformed_point, Point3::new(0.0, 2.0, 1.0), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn inverse_transform_point(&self, pt: &Point<T, D>) -> Point<T, D> {
self.rotation
.inverse_transform_point(&(pt - &self.translation.vector))
}
/// Transform the given vector by the inverse of this isometry, ignoring the
/// translation component of the isometry. This may be
/// less expensive than computing the entire isometry inverse and then
/// transforming the point.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3};
/// let tra = Translation3::new(0.0, 0.0, 3.0);
/// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
/// let iso = Isometry3::from_parts(tra, rot);
///
/// let transformed_point = iso.inverse_transform_vector(&Vector3::new(1.0, 2.0, 3.0));
/// assert_relative_eq!(transformed_point, Vector3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn inverse_transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D> {
self.rotation.inverse_transform_vector(v)
}
/// Transform the given unit vector by the inverse of this isometry, ignoring the
/// translation component of the isometry. This may be
/// less expensive than computing the entire isometry inverse and then
/// transforming the point.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3};
/// let tra = Translation3::new(0.0, 0.0, 3.0);
/// let rot = UnitQuaternion::from_scaled_axis(Vector3::z() * f32::consts::FRAC_PI_2);
/// let iso = Isometry3::from_parts(tra, rot);
///
/// let transformed_point = iso.inverse_transform_unit_vector(&Vector3::x_axis());
/// assert_relative_eq!(transformed_point, -Vector3::y_axis(), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn inverse_transform_unit_vector(&self, v: &Unit<SVector<T, D>>) -> Unit<SVector<T, D>> {
self.rotation.inverse_transform_unit_vector(v)
}
}
// NOTE: we don't require `R: Rotation<...>` here because this is not useful for the implementation
// and makes it hard to use it, e.g., for Transform × Isometry implementation.
// This is OK since all constructors of the isometry enforce the Rotation bound already (and
// explicit struct construction is prevented by the dummy ZST field).
/// # Conversion to a matrix
impl<T: SimdRealField, R, const D: usize> Isometry<T, R, D> {
/// Converts this isometry into its equivalent homogeneous transformation matrix.
///
/// This is the same as `self.to_matrix()`.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry2, Vector2, Matrix3};
/// let iso = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_6);
/// let expected = Matrix3::new(0.8660254, -0.5, 10.0,
/// 0.5, 0.8660254, 20.0,
/// 0.0, 0.0, 1.0);
///
/// assert_relative_eq!(iso.to_homogeneous(), expected, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn to_homogeneous(&self) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
where
Const<D>: DimNameAdd<U1>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
{
let mut res: OMatrix<T, _, _> = crate::convert_ref(&self.rotation);
res.fixed_view_mut::<D, 1>(0, D)
.copy_from(&self.translation.vector);
res
}
/// Converts this isometry into its equivalent homogeneous transformation matrix.
///
/// This is the same as `self.to_homogeneous()`.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry2, Vector2, Matrix3};
/// let iso = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_6);
/// let expected = Matrix3::new(0.8660254, -0.5, 10.0,
/// 0.5, 0.8660254, 20.0,
/// 0.0, 0.0, 1.0);
///
/// assert_relative_eq!(iso.to_matrix(), expected, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn to_matrix(&self) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
where
Const<D>: DimNameAdd<U1>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
{
self.to_homogeneous()
}
}
impl<T: SimdRealField, R, const D: usize> Eq for Isometry<T, R, D> where
R: AbstractRotation<T, D> + Eq
{
}
impl<T: SimdRealField, R, const D: usize> PartialEq for Isometry<T, R, D>
where
R: AbstractRotation<T, D> + PartialEq,
{
#[inline]
fn eq(&self, right: &Self) -> bool {
self.translation == right.translation && self.rotation == right.rotation
}
}
impl<T: RealField, R, const D: usize> AbsDiffEq for Isometry<T, R, D>
where
R: AbstractRotation<T, D> + AbsDiffEq<Epsilon = T::Epsilon>,
T::Epsilon: Clone,
{
type Epsilon = T::Epsilon;
#[inline]
fn default_epsilon() -> Self::Epsilon {
T::default_epsilon()
}
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.translation
.abs_diff_eq(&other.translation, epsilon.clone())
&& self.rotation.abs_diff_eq(&other.rotation, epsilon)
}
}
impl<T: RealField, R, const D: usize> RelativeEq for Isometry<T, R, D>
where
R: AbstractRotation<T, D> + RelativeEq<Epsilon = T::Epsilon>,
T::Epsilon: Clone,
{
#[inline]
fn default_max_relative() -> Self::Epsilon {
T::default_max_relative()
}
#[inline]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
self.translation
.relative_eq(&other.translation, epsilon.clone(), max_relative.clone())
&& self
.rotation
.relative_eq(&other.rotation, epsilon, max_relative)
}
}
impl<T: RealField, R, const D: usize> UlpsEq for Isometry<T, R, D>
where
R: AbstractRotation<T, D> + UlpsEq<Epsilon = T::Epsilon>,
T::Epsilon: Clone,
{
#[inline]
fn default_max_ulps() -> u32 {
T::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.translation
.ulps_eq(&other.translation, epsilon.clone(), max_ulps)
&& self.rotation.ulps_eq(&other.rotation, epsilon, max_ulps)
}
}
/*
*
* Display
*
*/
impl<T: RealField + fmt::Display, R, const D: usize> fmt::Display for Isometry<T, R, D>
where
R: fmt::Display,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let precision = f.precision().unwrap_or(3);
writeln!(f, "Isometry {{")?;
write!(f, "{:.*}", precision, self.translation)?;
write!(f, "{:.*}", precision, self.rotation)?;
writeln!(f, "}}")
}
}