forked from M-Labs/nalgebra
407 lines
15 KiB
Rust
407 lines
15 KiB
Rust
#[cfg(feature = "arbitrary")]
|
|
use crate::base::storage::Owned;
|
|
#[cfg(feature = "arbitrary")]
|
|
use quickcheck::{Arbitrary, Gen};
|
|
|
|
use num::One;
|
|
#[cfg(feature = "rand-no-std")]
|
|
use rand::{
|
|
distributions::{Distribution, Standard},
|
|
Rng,
|
|
};
|
|
|
|
use simba::scalar::SupersetOf;
|
|
use simba::simd::SimdRealField;
|
|
|
|
use crate::base::allocator::Allocator;
|
|
use crate::base::dimension::{DimName, U2, U3};
|
|
use crate::base::{DefaultAllocator, Vector2, Vector3};
|
|
|
|
use crate::{
|
|
AbstractRotation, Isometry, Point, Point3, Rotation2, Rotation3, Scalar, Similarity,
|
|
Translation, UnitComplex, UnitQuaternion,
|
|
};
|
|
|
|
impl<N: SimdRealField, D: DimName, R> Similarity<N, D, R>
|
|
where
|
|
N::Element: SimdRealField,
|
|
R: AbstractRotation<N, D>,
|
|
DefaultAllocator: Allocator<N, D>,
|
|
{
|
|
/// Creates a new identity similarity.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use nalgebra::{Similarity2, Point2, Similarity3, Point3};
|
|
///
|
|
/// let sim = Similarity2::identity();
|
|
/// let pt = Point2::new(1.0, 2.0);
|
|
/// assert_eq!(sim * pt, pt);
|
|
///
|
|
/// let sim = Similarity3::identity();
|
|
/// let pt = Point3::new(1.0, 2.0, 3.0);
|
|
/// assert_eq!(sim * pt, pt);
|
|
/// ```
|
|
#[inline]
|
|
pub fn identity() -> Self {
|
|
Self::from_isometry(Isometry::identity(), N::one())
|
|
}
|
|
}
|
|
|
|
impl<N: SimdRealField, D: DimName, R> One for Similarity<N, D, R>
|
|
where
|
|
N::Element: SimdRealField,
|
|
R: AbstractRotation<N, D>,
|
|
DefaultAllocator: Allocator<N, D>,
|
|
{
|
|
/// Creates a new identity similarity.
|
|
#[inline]
|
|
fn one() -> Self {
|
|
Self::identity()
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "rand-no-std")]
|
|
impl<N: crate::RealField, D: DimName, R> Distribution<Similarity<N, D, R>> for Standard
|
|
where
|
|
R: AbstractRotation<N, D>,
|
|
DefaultAllocator: Allocator<N, D>,
|
|
Standard: Distribution<N> + Distribution<R>,
|
|
{
|
|
/// Generate an arbitrary random variate for testing purposes.
|
|
#[inline]
|
|
fn sample<'a, G: Rng + ?Sized>(&self, rng: &mut G) -> Similarity<N, D, R> {
|
|
let mut s = rng.gen();
|
|
while relative_eq!(s, N::zero()) {
|
|
s = rng.gen()
|
|
}
|
|
|
|
Similarity::from_isometry(rng.gen(), s)
|
|
}
|
|
}
|
|
|
|
impl<N: SimdRealField, D: DimName, R> Similarity<N, D, R>
|
|
where
|
|
N::Element: SimdRealField,
|
|
R: AbstractRotation<N, D>,
|
|
DefaultAllocator: Allocator<N, D>,
|
|
{
|
|
/// The similarity that applies the scaling factor `scaling`, followed by the rotation `r` with
|
|
/// its axis passing through the point `p`.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # #[macro_use] extern crate approx;
|
|
/// # use std::f32;
|
|
/// # use nalgebra::{Similarity2, Point2, UnitComplex};
|
|
/// let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
|
|
/// let pt = Point2::new(3.0, 2.0);
|
|
/// let sim = Similarity2::rotation_wrt_point(rot, pt, 4.0);
|
|
///
|
|
/// assert_relative_eq!(sim * Point2::new(1.0, 2.0), Point2::new(-3.0, 3.0), epsilon = 1.0e-6);
|
|
/// ```
|
|
#[inline]
|
|
pub fn rotation_wrt_point(r: R, p: Point<N, D>, scaling: N) -> Self {
|
|
let shift = r.transform_vector(&-&p.coords);
|
|
Self::from_parts(Translation::from(shift + p.coords), r, scaling)
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "arbitrary")]
|
|
impl<N, D: DimName, R> Arbitrary for Similarity<N, D, R>
|
|
where
|
|
N: crate::RealField + Arbitrary + Send,
|
|
N::Element: crate::RealField,
|
|
R: AbstractRotation<N, D> + Arbitrary + Send,
|
|
DefaultAllocator: Allocator<N, D>,
|
|
Owned<N, D>: Send,
|
|
{
|
|
#[inline]
|
|
fn arbitrary(rng: &mut Gen) -> Self {
|
|
let mut s: N = Arbitrary::arbitrary(rng);
|
|
while s.is_zero() {
|
|
s = Arbitrary::arbitrary(rng)
|
|
}
|
|
|
|
Self::from_isometry(Arbitrary::arbitrary(rng), s)
|
|
}
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Constructors for various static dimensions.
|
|
*
|
|
*/
|
|
|
|
// 2D similarity.
|
|
impl<N: SimdRealField> Similarity<N, U2, Rotation2<N>>
|
|
where
|
|
N::Element: SimdRealField,
|
|
{
|
|
/// Creates a new similarity from a translation, a rotation, and an uniform scaling factor.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # #[macro_use] extern crate approx;
|
|
/// # use std::f32;
|
|
/// # use nalgebra::{SimilarityMatrix2, Vector2, Point2};
|
|
/// let sim = SimilarityMatrix2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2, 3.0);
|
|
///
|
|
/// assert_relative_eq!(sim * Point2::new(2.0, 4.0), Point2::new(-11.0, 8.0), epsilon = 1.0e-6);
|
|
/// ```
|
|
#[inline]
|
|
pub fn new(translation: Vector2<N>, angle: N, scaling: N) -> Self {
|
|
Self::from_parts(
|
|
Translation::from(translation),
|
|
Rotation2::new(angle),
|
|
scaling,
|
|
)
|
|
}
|
|
|
|
/// Cast the components of `self` to another type.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::SimilarityMatrix2;
|
|
/// let sim = SimilarityMatrix2::<f64>::identity();
|
|
/// let sim2 = sim.cast::<f32>();
|
|
/// assert_eq!(sim2, SimilarityMatrix2::<f32>::identity());
|
|
/// ```
|
|
pub fn cast<To: Scalar>(self) -> Similarity<To, U2, Rotation2<To>>
|
|
where
|
|
Similarity<To, U2, Rotation2<To>>: SupersetOf<Self>,
|
|
{
|
|
crate::convert(self)
|
|
}
|
|
}
|
|
|
|
impl<N: SimdRealField> Similarity<N, U2, UnitComplex<N>>
|
|
where
|
|
N::Element: SimdRealField,
|
|
{
|
|
/// Creates a new similarity from a translation and a rotation angle.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # #[macro_use] extern crate approx;
|
|
/// # use std::f32;
|
|
/// # use nalgebra::{Similarity2, Vector2, Point2};
|
|
/// let sim = Similarity2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2, 3.0);
|
|
///
|
|
/// assert_relative_eq!(sim * Point2::new(2.0, 4.0), Point2::new(-11.0, 8.0), epsilon = 1.0e-6);
|
|
/// ```
|
|
#[inline]
|
|
pub fn new(translation: Vector2<N>, angle: N, scaling: N) -> Self {
|
|
Self::from_parts(
|
|
Translation::from(translation),
|
|
UnitComplex::new(angle),
|
|
scaling,
|
|
)
|
|
}
|
|
|
|
/// Cast the components of `self` to another type.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::Similarity2;
|
|
/// let sim = Similarity2::<f64>::identity();
|
|
/// let sim2 = sim.cast::<f32>();
|
|
/// assert_eq!(sim2, Similarity2::<f32>::identity());
|
|
/// ```
|
|
pub fn cast<To: Scalar>(self) -> Similarity<To, U2, UnitComplex<To>>
|
|
where
|
|
Similarity<To, U2, UnitComplex<To>>: SupersetOf<Self>,
|
|
{
|
|
crate::convert(self)
|
|
}
|
|
}
|
|
|
|
// 3D rotation.
|
|
macro_rules! similarity_construction_impl(
|
|
($Rot: ident) => {
|
|
impl<N: SimdRealField> Similarity<N, U3, $Rot<N>>
|
|
where N::Element: SimdRealField {
|
|
/// Creates a new similarity from a translation, rotation axis-angle, and scaling
|
|
/// factor.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # #[macro_use] extern crate approx;
|
|
/// # use std::f32;
|
|
/// # use nalgebra::{Similarity3, SimilarityMatrix3, Point3, Vector3};
|
|
/// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
|
|
/// let translation = Vector3::new(1.0, 2.0, 3.0);
|
|
/// // Point and vector being transformed in the tests.
|
|
/// let pt = Point3::new(4.0, 5.0, 6.0);
|
|
/// let vec = Vector3::new(4.0, 5.0, 6.0);
|
|
///
|
|
/// // Similarity with its rotation part represented as a UnitQuaternion
|
|
/// let sim = Similarity3::new(translation, axisangle, 3.0);
|
|
/// assert_relative_eq!(sim * pt, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5);
|
|
/// assert_relative_eq!(sim * vec, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5);
|
|
///
|
|
/// // Similarity with its rotation part represented as a Rotation3 (a 3x3 rotation matrix).
|
|
/// let sim = SimilarityMatrix3::new(translation, axisangle, 3.0);
|
|
/// assert_relative_eq!(sim * pt, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5);
|
|
/// assert_relative_eq!(sim * vec, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5);
|
|
/// ```
|
|
#[inline]
|
|
pub fn new(translation: Vector3<N>, axisangle: Vector3<N>, scaling: N) -> Self
|
|
{
|
|
Self::from_isometry(Isometry::<_, U3, $Rot<N>>::new(translation, axisangle), scaling)
|
|
}
|
|
|
|
/// Cast the components of `self` to another type.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::Similarity3;
|
|
/// let sim = Similarity3::<f64>::identity();
|
|
/// let sim2 = sim.cast::<f32>();
|
|
/// assert_eq!(sim2, Similarity3::<f32>::identity());
|
|
/// ```
|
|
pub fn cast<To: Scalar>(self) -> Similarity<To, U3, $Rot<To>>
|
|
where
|
|
Similarity<To, U3, $Rot<To>>: SupersetOf<Self>,
|
|
{
|
|
crate::convert(self)
|
|
}
|
|
|
|
/// Creates an similarity that corresponds to a scaling factor and a local frame of
|
|
/// an observer standing at the point `eye` and looking toward `target`.
|
|
///
|
|
/// It maps the view direction `target - eye` to the positive `z` axis and the origin to the
|
|
/// `eye`.
|
|
///
|
|
/// # Arguments
|
|
/// * eye - The observer position.
|
|
/// * target - The target position.
|
|
/// * up - Vertical direction. The only requirement of this parameter is to not be collinear
|
|
/// to `eye - at`. Non-collinearity is not checked.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # #[macro_use] extern crate approx;
|
|
/// # use std::f32;
|
|
/// # use nalgebra::{Similarity3, SimilarityMatrix3, Point3, Vector3};
|
|
/// let eye = Point3::new(1.0, 2.0, 3.0);
|
|
/// let target = Point3::new(2.0, 2.0, 3.0);
|
|
/// let up = Vector3::y();
|
|
///
|
|
/// // Similarity with its rotation part represented as a UnitQuaternion
|
|
/// let sim = Similarity3::face_towards(&eye, &target, &up, 3.0);
|
|
/// assert_eq!(sim * Point3::origin(), eye);
|
|
/// assert_relative_eq!(sim * Vector3::z(), Vector3::x() * 3.0, epsilon = 1.0e-6);
|
|
///
|
|
/// // Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
|
|
/// let sim = SimilarityMatrix3::face_towards(&eye, &target, &up, 3.0);
|
|
/// assert_eq!(sim * Point3::origin(), eye);
|
|
/// assert_relative_eq!(sim * Vector3::z(), Vector3::x() * 3.0, epsilon = 1.0e-6);
|
|
/// ```
|
|
#[inline]
|
|
pub fn face_towards(eye: &Point3<N>,
|
|
target: &Point3<N>,
|
|
up: &Vector3<N>,
|
|
scaling: N)
|
|
-> Self {
|
|
Self::from_isometry(Isometry::<_, U3, $Rot<N>>::face_towards(eye, target, up), scaling)
|
|
}
|
|
|
|
/// Deprecated: Use [SimilarityMatrix3::face_towards] instead.
|
|
#[deprecated(note="renamed to `face_towards`")]
|
|
pub fn new_observer_frames(eye: &Point3<N>,
|
|
target: &Point3<N>,
|
|
up: &Vector3<N>,
|
|
scaling: N)
|
|
-> Self {
|
|
Self::face_towards(eye, target, up, scaling)
|
|
}
|
|
|
|
/// Builds a right-handed look-at view matrix including scaling factor.
|
|
///
|
|
/// This conforms to the common notion of right handed look-at matrix from the computer
|
|
/// graphics community.
|
|
///
|
|
/// # Arguments
|
|
/// * eye - The eye position.
|
|
/// * target - The target position.
|
|
/// * up - A vector approximately aligned with required the vertical axis. The only
|
|
/// requirement of this parameter is to not be collinear to `target - eye`.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # #[macro_use] extern crate approx;
|
|
/// # use std::f32;
|
|
/// # use nalgebra::{Similarity3, SimilarityMatrix3, Point3, Vector3};
|
|
/// let eye = Point3::new(1.0, 2.0, 3.0);
|
|
/// let target = Point3::new(2.0, 2.0, 3.0);
|
|
/// let up = Vector3::y();
|
|
///
|
|
/// // Similarity with its rotation part represented as a UnitQuaternion
|
|
/// let iso = Similarity3::look_at_rh(&eye, &target, &up, 3.0);
|
|
/// assert_relative_eq!(iso * Vector3::x(), -Vector3::z() * 3.0, epsilon = 1.0e-6);
|
|
///
|
|
/// // Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
|
|
/// let iso = SimilarityMatrix3::look_at_rh(&eye, &target, &up, 3.0);
|
|
/// assert_relative_eq!(iso * Vector3::x(), -Vector3::z() * 3.0, epsilon = 1.0e-6);
|
|
/// ```
|
|
#[inline]
|
|
pub fn look_at_rh(eye: &Point3<N>,
|
|
target: &Point3<N>,
|
|
up: &Vector3<N>,
|
|
scaling: N)
|
|
-> Self {
|
|
Self::from_isometry(Isometry::<_, U3, $Rot<N>>::look_at_rh(eye, target, up), scaling)
|
|
}
|
|
|
|
/// Builds a left-handed look-at view matrix including a scaling factor.
|
|
///
|
|
/// This conforms to the common notion of left handed look-at matrix from the computer
|
|
/// graphics community.
|
|
///
|
|
/// # Arguments
|
|
/// * eye - The eye position.
|
|
/// * target - The target position.
|
|
/// * up - A vector approximately aligned with required the vertical axis. The only
|
|
/// requirement of this parameter is to not be collinear to `target - eye`.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # #[macro_use] extern crate approx;
|
|
/// # use std::f32;
|
|
/// # use nalgebra::{Similarity3, SimilarityMatrix3, Point3, Vector3};
|
|
/// let eye = Point3::new(1.0, 2.0, 3.0);
|
|
/// let target = Point3::new(2.0, 2.0, 3.0);
|
|
/// let up = Vector3::y();
|
|
///
|
|
/// // Similarity with its rotation part represented as a UnitQuaternion
|
|
/// let sim = Similarity3::look_at_lh(&eye, &target, &up, 3.0);
|
|
/// assert_relative_eq!(sim * Vector3::x(), Vector3::z() * 3.0, epsilon = 1.0e-6);
|
|
///
|
|
/// // Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
|
|
/// let sim = SimilarityMatrix3::look_at_lh(&eye, &target, &up, 3.0);
|
|
/// assert_relative_eq!(sim * Vector3::x(), Vector3::z() * 3.0, epsilon = 1.0e-6);
|
|
/// ```
|
|
#[inline]
|
|
pub fn look_at_lh(eye: &Point3<N>,
|
|
target: &Point3<N>,
|
|
up: &Vector3<N>,
|
|
scaling: N)
|
|
-> Self {
|
|
Self::from_isometry(Isometry::<_, _, $Rot<N>>::look_at_lh(eye, target, up), scaling)
|
|
}
|
|
}
|
|
}
|
|
);
|
|
|
|
similarity_construction_impl!(Rotation3);
|
|
similarity_construction_impl!(UnitQuaternion);
|