forked from M-Labs/nalgebra
432 lines
8.9 KiB
Rust
432 lines
8.9 KiB
Rust
#[macro_escape];
|
||
|
||
macro_rules! new_impl(
|
||
($t: ident, $dim: expr) => (
|
||
impl<N> $t<N>
|
||
{
|
||
#[inline]
|
||
pub fn new(at: [N, ..$dim]) -> $t<N>
|
||
{ $t { at: at } }
|
||
}
|
||
)
|
||
)
|
||
|
||
macro_rules! new_repeat_impl(
|
||
($t: ident, $param: ident, [ $($elem: ident)|+ ]) => (
|
||
impl<N: Copy> $t<N>
|
||
{
|
||
#[inline]
|
||
pub fn new_repeat($param: N) -> $t<N>
|
||
{ $t{ at: [ $( copy $elem, )+ ] } }
|
||
}
|
||
)
|
||
)
|
||
|
||
macro_rules! iterable_impl(
|
||
($t: ident) => (
|
||
impl<N> Iterable<N> for $t<N>
|
||
{
|
||
fn iter<'l>(&'l self) -> VecIterator<'l, N>
|
||
{ self.at.iter() }
|
||
}
|
||
)
|
||
)
|
||
|
||
macro_rules! iterable_mut_impl(
|
||
($t: ident) => (
|
||
impl<N> IterableMut<N> for $t<N>
|
||
{
|
||
fn mut_iter<'l>(&'l mut self) -> VecMutIterator<'l, N>
|
||
{ self.at.mut_iter() }
|
||
}
|
||
)
|
||
)
|
||
|
||
macro_rules! eq_impl(
|
||
($t: ident) => (
|
||
impl<N: Eq> Eq for $t<N>
|
||
{
|
||
#[inline]
|
||
fn eq(&self, other: &$t<N>) -> bool
|
||
{ self.at.iter().zip(other.at.iter()).all(|(a, b)| a == b) }
|
||
|
||
#[inline]
|
||
fn ne(&self, other: &$t<N>) -> bool
|
||
{ self.at.iter().zip(other.at.iter()).all(|(a, b)| a != b) }
|
||
}
|
||
)
|
||
)
|
||
|
||
macro_rules! dim_impl(
|
||
($t: ident, $dim: expr) => (
|
||
impl<N> Dim for $t<N>
|
||
{
|
||
#[inline]
|
||
fn dim() -> uint
|
||
{ $dim }
|
||
}
|
||
)
|
||
)
|
||
|
||
// FIXME: add the possibility to specialize that
|
||
macro_rules! basis_impl(
|
||
($t: ident, $dim: expr) => (
|
||
impl<N: Copy + DivisionRing + Algebraic + ApproxEq<N>> Basis for $t<N>
|
||
{
|
||
pub fn canonical_basis() -> ~[$t<N>]
|
||
{
|
||
let mut res : ~[$t<N>] = ~[];
|
||
|
||
for iterate(0u, $dim) |i|
|
||
{
|
||
let mut basis_element : $t<N> = Zero::zero();
|
||
|
||
basis_element.at[i] = One::one();
|
||
|
||
res.push(basis_element);
|
||
}
|
||
|
||
res
|
||
}
|
||
|
||
pub fn orthogonal_subspace_basis(&self) -> ~[$t<N>]
|
||
{
|
||
// compute the basis of the orthogonal subspace using Gram-Schmidt
|
||
// orthogonalization algorithm
|
||
let mut res : ~[$t<N>] = ~[];
|
||
|
||
for iterate(0u, $dim) |i|
|
||
{
|
||
let mut basis_element : $t<N> = Zero::zero();
|
||
|
||
basis_element.at[i] = One::one();
|
||
|
||
if res.len() == $dim - 1
|
||
{ break; }
|
||
|
||
let mut elt = copy basis_element;
|
||
|
||
elt = elt - self.scalar_mul(&basis_element.dot(self));
|
||
|
||
for res.iter().advance |v|
|
||
{ elt = elt - v.scalar_mul(&elt.dot(v)) };
|
||
|
||
if !elt.sqnorm().approx_eq(&Zero::zero())
|
||
{ res.push(elt.normalized()); }
|
||
}
|
||
|
||
res
|
||
}
|
||
}
|
||
)
|
||
)
|
||
|
||
macro_rules! add_impl(
|
||
($t: ident) => (
|
||
impl<N: Copy + Add<N,N>> Add<$t<N>, $t<N>> for $t<N>
|
||
{
|
||
#[inline]
|
||
fn add(&self, other: &$t<N>) -> $t<N>
|
||
{
|
||
self.at.iter()
|
||
.zip(other.at.iter())
|
||
.transform(|(a, b)| { *a + *b })
|
||
.collect()
|
||
}
|
||
}
|
||
)
|
||
)
|
||
|
||
macro_rules! sub_impl(
|
||
($t: ident) => (
|
||
impl<N: Copy + Sub<N,N>> Sub<$t<N>, $t<N>> for $t<N>
|
||
{
|
||
#[inline]
|
||
fn sub(&self, other: &$t<N>) -> $t<N>
|
||
{
|
||
self.at.iter()
|
||
.zip(other.at.iter())
|
||
.transform(| (a, b) | { *a - *b })
|
||
.collect()
|
||
}
|
||
}
|
||
)
|
||
)
|
||
|
||
macro_rules! neg_impl(
|
||
($t: ident) => (
|
||
impl<N: Neg<N>> Neg<$t<N>> for $t<N>
|
||
{
|
||
#[inline]
|
||
fn neg(&self) -> $t<N>
|
||
{ self.at.iter().transform(|a| -a).collect() }
|
||
}
|
||
)
|
||
)
|
||
|
||
macro_rules! dot_impl(
|
||
($t: ident, $dim: expr) => (
|
||
impl<N: Ring> Dot<N> for $t<N>
|
||
{
|
||
#[inline]
|
||
fn dot(&self, other: &$t<N>) -> N
|
||
{
|
||
let mut res = Zero::zero::<N>();
|
||
|
||
for iterate(0u, $dim) |i|
|
||
{ res = res + self.at[i] * other.at[i]; }
|
||
|
||
res
|
||
}
|
||
}
|
||
)
|
||
)
|
||
|
||
macro_rules! sub_dot_impl(
|
||
($t: ident, $dim: expr) => (
|
||
impl<N: Ring> SubDot<N> for $t<N>
|
||
{
|
||
#[inline]
|
||
fn sub_dot(&self, a: &$t<N>, b: &$t<N>) -> N
|
||
{
|
||
let mut res = Zero::zero::<N>();
|
||
|
||
for iterate(0u, $dim) |i|
|
||
{ res = res + (self.at[i] - a.at[i]) * b.at[i]; }
|
||
|
||
res
|
||
}
|
||
}
|
||
)
|
||
)
|
||
|
||
macro_rules! scalar_mul_impl(
|
||
($t: ident, $dim: expr) => (
|
||
impl<N: Mul<N, N>> ScalarMul<N> for $t<N>
|
||
{
|
||
#[inline]
|
||
fn scalar_mul(&self, s: &N) -> $t<N>
|
||
{ self.at.iter().transform(|a| a * *s).collect() }
|
||
|
||
#[inline]
|
||
fn scalar_mul_inplace(&mut self, s: &N)
|
||
{
|
||
for iterate(0u, $dim) |i|
|
||
{ self.at[i] = self.at[i] * *s; }
|
||
}
|
||
}
|
||
)
|
||
)
|
||
|
||
|
||
macro_rules! scalar_div_impl(
|
||
($t: ident, $dim: expr) => (
|
||
impl<N: Div<N, N>> ScalarDiv<N> for $t<N>
|
||
{
|
||
#[inline]
|
||
fn scalar_div(&self, s: &N) -> $t<N>
|
||
{ self.at.iter().transform(|a| a / *s).collect() }
|
||
|
||
#[inline]
|
||
fn scalar_div_inplace(&mut self, s: &N)
|
||
{
|
||
for iterate(0u, $dim) |i|
|
||
{ self.at[i] = self.at[i] / *s; }
|
||
}
|
||
}
|
||
)
|
||
)
|
||
|
||
macro_rules! scalar_add_impl(
|
||
($t: ident, $dim: expr) => (
|
||
impl<N: Add<N, N>> ScalarAdd<N> for $t<N>
|
||
{
|
||
#[inline]
|
||
fn scalar_add(&self, s: &N) -> $t<N>
|
||
{ self.at.iter().transform(|a| a + *s).collect() }
|
||
|
||
#[inline]
|
||
fn scalar_add_inplace(&mut self, s: &N)
|
||
{
|
||
for iterate(0u, $dim) |i|
|
||
{ self.at[i] = self.at[i] + *s; }
|
||
}
|
||
}
|
||
)
|
||
)
|
||
|
||
macro_rules! scalar_sub_impl(
|
||
($t: ident, $dim: expr) => (
|
||
impl<N: Sub<N, N>> ScalarSub<N> for $t<N>
|
||
{
|
||
#[inline]
|
||
fn scalar_sub(&self, s: &N) -> $t<N>
|
||
{ self.at.iter().transform(|a| a - *s).collect() }
|
||
|
||
#[inline]
|
||
fn scalar_sub_inplace(&mut self, s: &N)
|
||
{
|
||
for iterate(0u, $dim) |i|
|
||
{ self.at[i] = self.at[i] - *s; }
|
||
}
|
||
}
|
||
)
|
||
)
|
||
|
||
macro_rules! translation_impl(
|
||
($t: ident) => (
|
||
impl<N: Copy + Add<N, N> + Neg<N>> Translation<$t<N>> for $t<N>
|
||
{
|
||
#[inline]
|
||
fn translation(&self) -> $t<N>
|
||
{ copy *self }
|
||
|
||
#[inline]
|
||
fn inv_translation(&self) -> $t<N>
|
||
{ -self }
|
||
|
||
#[inline]
|
||
fn translate_by(&mut self, t: &$t<N>)
|
||
{ *self = *self + *t; }
|
||
}
|
||
)
|
||
)
|
||
|
||
macro_rules! translatable_impl(
|
||
($t: ident) => (
|
||
impl<N: Add<N, N> + Copy> Translatable<$t<N>, $t<N>> for $t<N>
|
||
{
|
||
#[inline]
|
||
fn translated(&self, t: &$t<N>) -> $t<N>
|
||
{ self + *t }
|
||
}
|
||
)
|
||
)
|
||
|
||
macro_rules! norm_impl(
|
||
($t: ident, $dim: expr) => (
|
||
impl<N: Copy + DivisionRing + Algebraic> Norm<N> for $t<N>
|
||
{
|
||
#[inline]
|
||
fn sqnorm(&self) -> N
|
||
{ self.dot(self) }
|
||
|
||
#[inline]
|
||
fn norm(&self) -> N
|
||
{ self.sqnorm().sqrt() }
|
||
|
||
#[inline]
|
||
fn normalized(&self) -> $t<N>
|
||
{
|
||
let mut res : $t<N> = copy *self;
|
||
|
||
res.normalize();
|
||
|
||
res
|
||
}
|
||
|
||
#[inline]
|
||
fn normalize(&mut self) -> N
|
||
{
|
||
let l = self.norm();
|
||
|
||
for iterate(0u, $dim) |i|
|
||
{ self.at[i] = self.at[i] / l; }
|
||
|
||
l
|
||
}
|
||
}
|
||
)
|
||
)
|
||
|
||
macro_rules! approx_eq_impl(
|
||
($t: ident) => (
|
||
impl<N: ApproxEq<N>> ApproxEq<N> for $t<N>
|
||
{
|
||
#[inline]
|
||
fn approx_epsilon() -> N
|
||
{ ApproxEq::approx_epsilon::<N, N>() }
|
||
|
||
#[inline]
|
||
fn approx_eq(&self, other: &$t<N>) -> bool
|
||
{
|
||
let mut zip = self.at.iter().zip(other.at.iter());
|
||
|
||
do zip.all |(a, b)| { a.approx_eq(b) }
|
||
}
|
||
|
||
#[inline]
|
||
fn approx_eq_eps(&self, other: &$t<N>, epsilon: &N) -> bool
|
||
{
|
||
let mut zip = self.at.iter().zip(other.at.iter());
|
||
|
||
do zip.all |(a, b)| { a.approx_eq_eps(b, epsilon) }
|
||
}
|
||
}
|
||
)
|
||
)
|
||
|
||
macro_rules! zero_impl(
|
||
($t: ident) => (
|
||
impl<N: Copy + Zero> Zero for $t<N>
|
||
{
|
||
#[inline]
|
||
fn zero() -> $t<N>
|
||
{ $t::new_repeat(Zero::zero()) }
|
||
|
||
#[inline]
|
||
fn is_zero(&self) -> bool
|
||
{ self.at.iter().all(|e| e.is_zero()) }
|
||
}
|
||
)
|
||
)
|
||
|
||
macro_rules! rand_impl(
|
||
($t: ident, $param: ident, [ $($elem: ident)|+ ]) => (
|
||
impl<N: Rand> Rand for $t<N>
|
||
{
|
||
#[inline]
|
||
fn rand<R: Rng>($param: &mut R) -> $t<N>
|
||
{ $t::new([ $( $elem.gen(), )+ ]) }
|
||
}
|
||
)
|
||
)
|
||
|
||
macro_rules! from_any_iterator_impl(
|
||
($t: ident, $param: ident, [ $($elem: ident)|+ ]) => (
|
||
impl<N: Copy> FromAnyIterator<N> for $t<N>
|
||
{
|
||
fn from_iterator<'l>($param: &mut VecIterator<'l, N>) -> $t<N>
|
||
{ $t { at: [ $( copy *$elem.next().unwrap(), )+ ] } }
|
||
|
||
fn from_mut_iterator<'l>($param: &mut VecMutIterator<'l, N>) -> $t<N>
|
||
{ $t { at: [ $( copy *$elem.next().unwrap(), )+ ] } }
|
||
}
|
||
)
|
||
)
|
||
|
||
macro_rules! from_iterator_impl(
|
||
($t: ident, $param: ident, [ $($elem: ident)|+ ]) => (
|
||
impl<N, Iter: Iterator<N>> FromIterator<N, Iter> for $t<N>
|
||
{
|
||
fn from_iterator($param: &mut Iter) -> $t<N>
|
||
{ $t { at: [ $( $elem.next().unwrap(), )+ ] } }
|
||
}
|
||
)
|
||
)
|
||
|
||
macro_rules! bounded_impl(
|
||
($t: ident) => (
|
||
impl<N: Bounded + Copy> Bounded for $t<N>
|
||
{
|
||
#[inline]
|
||
fn max_value() -> $t<N>
|
||
{ $t::new_repeat(Bounded::max_value()) }
|
||
|
||
#[inline]
|
||
fn min_value() -> $t<N>
|
||
{ $t::new_repeat(Bounded::min_value()) }
|
||
}
|
||
)
|
||
)
|