nalgebra/src/mat.rs
2013-06-28 22:55:09 +00:00

601 lines
14 KiB
Rust

use std::uint::iterate;
use std::num::{One, Zero};
use std::vec::swap;
use std::cmp::ApproxEq;
use std::rand::{Rand, Rng, RngUtil};
use std::iterator::IteratorUtil;
use vec::{Vec1, Vec2, Vec3, Vec4, Vec5, Vec6};
use traits::dim::Dim;
use traits::ring::Ring;
use traits::inv::Inv;
use traits::division_ring::DivisionRing;
use traits::transpose::Transpose;
use traits::rlmul::{RMul, LMul};
use traits::transformation::Transform;
macro_rules! mat_impl(
($t: ident, $dim: expr) => (
impl<N> $t<N>
{
#[inline]
pub fn new(mij: [N, ..$dim * $dim]) -> $t<N>
{ $t { mij: mij } }
}
)
)
macro_rules! one_impl(
($t: ident, [ $($value: ident)|+ ] ) => (
impl<N: Copy + One + Zero> One for $t<N>
{
#[inline]
fn one() -> $t<N>
{
let (_0, _1) = (Zero::zero::<N>(), One::one::<N>());
return $t::new( [ $( copy $value, )+ ] )
}
}
)
)
macro_rules! zero_impl(
($t: ident, [ $($value: ident)|+ ] ) => (
impl<N: Copy + Zero> Zero for $t<N>
{
#[inline]
fn zero() -> $t<N>
{
let _0 = Zero::zero();
return $t::new( [ $( copy $value, )+ ] )
}
#[inline]
fn is_zero(&self) -> bool
{ self.mij.iter().all(|e| e.is_zero()) }
}
)
)
macro_rules! dim_impl(
($t: ident, $dim: expr) => (
impl<N> Dim for $t<N>
{
#[inline]
fn dim() -> uint
{ $dim }
}
)
)
macro_rules! mat_indexing_impl(
($t: ident, $dim: expr) => (
impl<N: Copy> $t<N>
{
#[inline]
pub fn offset(&self, i: uint, j: uint) -> uint
{ i * $dim + j }
#[inline]
pub fn set(&mut self, i: uint, j: uint, t: &N)
{
self.mij[self.offset(i, j)] = copy *t
}
#[inline]
pub fn at(&self, i: uint, j: uint) -> N
{
copy self.mij[self.offset(i, j)]
}
}
)
)
macro_rules! mul_impl(
($t: ident, $dim: expr) => (
impl<N: Copy + Ring>
Mul<$t<N>, $t<N>> for $t<N>
{
fn mul(&self, other: &$t<N>) -> $t<N>
{
let mut res: $t<N> = Zero::zero();
for iterate(0u, $dim) |i|
{
for iterate(0u, $dim) |j|
{
let mut acc = Zero::zero::<N>();
for iterate(0u, $dim) |k|
{ acc = acc + self.at(i, k) * other.at(k, j); }
res.set(i, j, &acc);
}
}
res
}
}
)
)
macro_rules! rmul_impl(
($t: ident, $v: ident, $dim: expr) => (
impl<N: Copy + Ring>
RMul<$v<N>> for $t<N>
{
fn rmul(&self, other: &$v<N>) -> $v<N>
{
let mut res : $v<N> = Zero::zero();
for iterate(0u, $dim) |i|
{
for iterate(0u, $dim) |j|
{ res.at[i] = res.at[i] + other.at[j] * self.at(i, j); }
}
res
}
}
)
)
macro_rules! lmul_impl(
($t: ident, $v: ident, $dim: expr) => (
impl<N: Copy + Ring>
LMul<$v<N>> for $t<N>
{
fn lmul(&self, other: &$v<N>) -> $v<N>
{
let mut res : $v<N> = Zero::zero();
for iterate(0u, $dim) |i|
{
for iterate(0u, $dim) |j|
{ res.at[i] = res.at[i] + other.at[j] * self.at(j, i); }
}
res
}
}
)
)
macro_rules! transform_impl(
($t: ident, $v: ident) => (
impl<N: Copy + DivisionRing + Eq>
Transform<$v<N>> for $t<N>
{
#[inline]
fn transform_vec(&self, v: &$v<N>) -> $v<N>
{ self.rmul(v) }
#[inline]
fn inv_transform(&self, v: &$v<N>) -> $v<N>
{ self.inverse().transform_vec(v) }
}
)
)
macro_rules! inv_impl(
($t: ident, $dim: expr) => (
impl<N: Copy + Eq + DivisionRing>
Inv for $t<N>
{
#[inline]
fn inverse(&self) -> $t<N>
{
let mut res : $t<N> = copy *self;
res.invert();
res
}
fn invert(&mut self)
{
let mut res: $t<N> = One::one();
let _0N: N = Zero::zero();
// inversion using Gauss-Jordan elimination
for iterate(0u, $dim) |k|
{
// search a non-zero value on the k-th column
// FIXME: would it be worth it to spend some more time searching for the
// max instead?
let mut n0 = k; // index of a non-zero entry
while (n0 != $dim)
{
if self.at(n0, k) != _0N
{ break; }
n0 = n0 + 1;
}
// swap pivot line
if n0 != k
{
for iterate(0u, $dim) |j|
{
let off_n0_j = self.offset(n0, j);
let off_k_j = self.offset(k, j);
swap(self.mij, off_n0_j, off_k_j);
swap(res.mij, off_n0_j, off_k_j);
}
}
let pivot = self.at(k, k);
for iterate(k, $dim) |j|
{
let selfval = &(self.at(k, j) / pivot);
self.set(k, j, selfval);
}
for iterate(0u, $dim) |j|
{
let resval = &(res.at(k, j) / pivot);
res.set(k, j, resval);
}
for iterate(0u, $dim) |l|
{
if l != k
{
let normalizer = self.at(l, k);
for iterate(k, $dim) |j|
{
let selfval = &(self.at(l, j) - self.at(k, j) * normalizer);
self.set(l, j, selfval);
}
for iterate(0u, $dim) |j|
{
let resval = &(res.at(l, j) - res.at(k, j) * normalizer);
res.set(l, j, resval);
}
}
}
}
*self = res;
}
}
)
)
macro_rules! transpose_impl(
($t: ident, $dim: expr) => (
impl<N: Copy> Transpose for $t<N>
{
#[inline]
fn transposed(&self) -> $t<N>
{
let mut res = copy *self;
res.transpose();
res
}
fn transpose(&mut self)
{
for iterate(1u, $dim) |i|
{
for iterate(0u, $dim - 1) |j|
{
let off_i_j = self.offset(i, j);
let off_j_i = self.offset(j, i);
swap(self.mij, off_i_j, off_j_i);
}
}
}
}
)
)
macro_rules! approx_eq_impl(
($t: ident) => (
impl<N: ApproxEq<N>> ApproxEq<N> for $t<N>
{
#[inline]
fn approx_epsilon() -> N
{ ApproxEq::approx_epsilon::<N, N>() }
#[inline]
fn approx_eq(&self, other: &$t<N>) -> bool
{
let mut zip = self.mij.iter().zip(other.mij.iter());
do zip.all |(a, b)| { a.approx_eq(b) }
}
#[inline]
fn approx_eq_eps(&self, other: &$t<N>, epsilon: &N) -> bool
{
let mut zip = self.mij.iter().zip(other.mij.iter());
do zip.all |(a, b)| { a.approx_eq_eps(b, epsilon) }
}
}
)
)
macro_rules! rand_impl(
($t: ident, $param: ident, [ $($elem: ident)|+ ]) => (
impl<N: Rand> Rand for $t<N>
{
#[inline]
fn rand<R: Rng>($param: &mut R) -> $t<N>
{ $t::new([ $( $elem.gen(), )+ ]) }
}
)
)
#[deriving(ToStr)]
pub struct Mat1<N>
{ mij: [N, ..1 * 1] }
mat_impl!(Mat1, 1)
one_impl!(Mat1, [ _1 ])
zero_impl!(Mat1, [ _0 ])
dim_impl!(Mat1, 1)
mat_indexing_impl!(Mat1, 1)
mul_impl!(Mat1, 1)
rmul_impl!(Mat1, Vec1, 1)
lmul_impl!(Mat1, Vec1, 1)
transform_impl!(Mat1, Vec1)
// inv_impl!(Mat1, 1)
transpose_impl!(Mat1, 1)
approx_eq_impl!(Mat1)
rand_impl!(Mat1, rng, [ rng ])
#[deriving(ToStr)]
pub struct Mat2<N>
{ mij: [N, ..2 * 2] }
mat_impl!(Mat2, 2)
one_impl!(Mat2, [ _1 | _0 |
_0 | _1 ])
zero_impl!(Mat2, [ _0 | _0 |
_0 | _0 ])
dim_impl!(Mat2, 2)
mat_indexing_impl!(Mat2, 2)
mul_impl!(Mat2, 2)
rmul_impl!(Mat2, Vec2, 2)
lmul_impl!(Mat2, Vec2, 2)
transform_impl!(Mat2, Vec2)
// inv_impl!(Mat2, 2)
transpose_impl!(Mat2, 2)
approx_eq_impl!(Mat2)
rand_impl!(Mat2, rng, [ rng | rng |
rng | rng ])
#[deriving(ToStr)]
pub struct Mat3<N>
{ mij: [N, ..3 * 3] }
mat_impl!(Mat3, 3)
one_impl!(Mat3, [ _1 | _0 | _0 |
_0 | _1 | _0 |
_0 | _0 | _1 ])
zero_impl!(Mat3, [ _0 | _0 | _0 |
_0 | _0 | _0 |
_0 | _0 | _0 ])
dim_impl!(Mat3, 3)
mat_indexing_impl!(Mat3, 3)
mul_impl!(Mat3, 3)
rmul_impl!(Mat3, Vec3, 3)
lmul_impl!(Mat3, Vec3, 3)
transform_impl!(Mat3, Vec3)
// inv_impl!(Mat3, 3)
transpose_impl!(Mat3, 3)
approx_eq_impl!(Mat3)
rand_impl!(Mat3, rng, [ rng | rng | rng |
rng | rng | rng |
rng | rng | rng])
#[deriving(ToStr)]
pub struct Mat4<N>
{ mij: [N, ..4 * 4] }
mat_impl!(Mat4, 4)
one_impl!(Mat4, [
_1 | _0 | _0 | _0 |
_0 | _1 | _0 | _0 |
_0 | _0 | _1 | _0 |
_0 | _0 | _0 | _1
])
zero_impl!(Mat4, [
_0 | _0 | _0 | _0 |
_0 | _0 | _0 | _0 |
_0 | _0 | _0 | _0 |
_0 | _0 | _0 | _0
])
dim_impl!(Mat4, 4)
mat_indexing_impl!(Mat4, 4)
mul_impl!(Mat4, 4)
rmul_impl!(Mat4, Vec4, 4)
lmul_impl!(Mat4, Vec4, 4)
transform_impl!(Mat4, Vec4)
inv_impl!(Mat4, 4)
transpose_impl!(Mat4, 4)
approx_eq_impl!(Mat4)
rand_impl!(Mat4, rng, [
rng | rng | rng | rng |
rng | rng | rng | rng |
rng | rng | rng | rng |
rng | rng | rng | rng
])
#[deriving(ToStr)]
pub struct Mat5<N>
{ mij: [N, ..5 * 5] }
mat_impl!(Mat5, 5)
one_impl!(Mat5, [
_1 | _0 | _0 | _0 | _0 |
_0 | _1 | _0 | _0 | _0 |
_0 | _0 | _1 | _0 | _0 |
_0 | _0 | _0 | _1 | _0 |
_0 | _0 | _0 | _0 | _1
])
zero_impl!(Mat5, [
_0 | _0 | _0 | _0 | _0 |
_0 | _0 | _0 | _0 | _0 |
_0 | _0 | _0 | _0 | _0 |
_0 | _0 | _0 | _0 | _0 |
_0 | _0 | _0 | _0 | _0
])
dim_impl!(Mat5, 5)
mat_indexing_impl!(Mat5, 5)
mul_impl!(Mat5, 5)
rmul_impl!(Mat5, Vec5, 5)
lmul_impl!(Mat5, Vec5, 5)
transform_impl!(Mat5, Vec5)
inv_impl!(Mat5, 5)
transpose_impl!(Mat5, 5)
approx_eq_impl!(Mat5)
rand_impl!(Mat5, rng, [
rng | rng | rng | rng | rng |
rng | rng | rng | rng | rng |
rng | rng | rng | rng | rng |
rng | rng | rng | rng | rng |
rng | rng | rng | rng | rng
])
#[deriving(ToStr)]
pub struct Mat6<N>
{ mij: [N, ..6 * 6] }
mat_impl!(Mat6, 6)
one_impl!(Mat6, [
_1 | _0 | _0 | _0 | _0 | _0 |
_0 | _1 | _0 | _0 | _0 | _0 |
_0 | _0 | _1 | _0 | _0 | _0 |
_0 | _0 | _0 | _1 | _0 | _0 |
_0 | _0 | _0 | _0 | _1 | _0 |
_0 | _0 | _0 | _0 | _0 | _1
])
zero_impl!(Mat6, [
_0 | _0 | _0 | _0 | _0 | _0 |
_0 | _0 | _0 | _0 | _0 | _0 |
_0 | _0 | _0 | _0 | _0 | _0 |
_0 | _0 | _0 | _0 | _0 | _0 |
_0 | _0 | _0 | _0 | _0 | _0 |
_0 | _0 | _0 | _0 | _0 | _0
])
dim_impl!(Mat6, 6)
mat_indexing_impl!(Mat6, 6)
mul_impl!(Mat6, 6)
rmul_impl!(Mat6, Vec6, 6)
lmul_impl!(Mat6, Vec6, 6)
transform_impl!(Mat6, Vec6)
inv_impl!(Mat6, 6)
transpose_impl!(Mat6, 6)
approx_eq_impl!(Mat6)
rand_impl!(Mat6, rng, [
rng | rng | rng | rng | rng | rng |
rng | rng | rng | rng | rng | rng |
rng | rng | rng | rng | rng | rng |
rng | rng | rng | rng | rng | rng |
rng | rng | rng | rng | rng | rng |
rng | rng | rng | rng | rng | rng
])
// some specializations:
impl<N: Copy + DivisionRing>
Inv for Mat1<N>
{
#[inline]
fn inverse(&self) -> Mat1<N>
{
let mut res : Mat1<N> = copy *self;
res.invert();
res
}
#[inline]
fn invert(&mut self)
{
assert!(!self.mij[0].is_zero());
self.mij[0] = One::one::<N>() / self.mij[0]
}
}
impl<N: Copy + DivisionRing>
Inv for Mat2<N>
{
#[inline]
fn inverse(&self) -> Mat2<N>
{
let mut res : Mat2<N> = copy *self;
res.invert();
res
}
#[inline]
fn invert(&mut self)
{
let det = self.mij[0 * 2 + 0] * self.mij[1 * 2 + 1] - self.mij[1 * 2 + 0] * self.mij[0 * 2 + 1];
assert!(!det.is_zero());
*self = Mat2::new([self.mij[1 * 2 + 1] / det , -self.mij[0 * 2 + 1] / det,
-self.mij[1 * 2 + 0] / det, self.mij[0 * 2 + 0] / det])
}
}
impl<N: Copy + DivisionRing>
Inv for Mat3<N>
{
#[inline]
fn inverse(&self) -> Mat3<N>
{
let mut res = copy *self;
res.invert();
res
}
#[inline]
fn invert(&mut self)
{
let minor_m12_m23 = self.mij[1 * 3 + 1] * self.mij[2 * 3 + 2] - self.mij[2 * 3 + 1] * self.mij[1 * 3 + 2];
let minor_m11_m23 = self.mij[1 * 3 + 0] * self.mij[2 * 3 + 2] - self.mij[2 * 3 + 0] * self.mij[1 * 3 + 2];
let minor_m11_m22 = self.mij[1 * 3 + 0] * self.mij[2 * 3 + 1] - self.mij[2 * 3 + 0] * self.mij[1 * 3 + 1];
let det = self.mij[0 * 3 + 0] * minor_m12_m23
- self.mij[0 * 3 + 1] * minor_m11_m23
+ self.mij[0 * 3 + 2] * minor_m11_m22;
assert!(!det.is_zero());
*self = Mat3::new( [
(minor_m12_m23 / det),
((self.mij[0 * 3 + 2] * self.mij[2 * 3 + 1] - self.mij[2 * 3 + 2] * self.mij[0 * 3 + 1]) / det),
((self.mij[0 * 3 + 1] * self.mij[1 * 3 + 2] - self.mij[1 * 3 + 1] * self.mij[0 * 3 + 2]) / det),
(-minor_m11_m23 / det),
((self.mij[0 * 3 + 0] * self.mij[2 * 3 + 2] - self.mij[2 * 3 + 0] * self.mij[0 * 3 + 2]) / det),
((self.mij[0 * 3 + 2] * self.mij[1 * 3 + 0] - self.mij[1 * 3 + 2] * self.mij[0 * 3 + 0]) / det),
(minor_m11_m22 / det),
((self.mij[0 * 3 + 1] * self.mij[2 * 3 + 0] - self.mij[2 * 3 + 1] * self.mij[0 * 3 + 0]) / det),
((self.mij[0 * 3 + 0] * self.mij[1 * 3 + 1] - self.mij[1 * 3 + 0] * self.mij[0 * 3 + 1]) / det)
] )
}
}