forked from M-Labs/nalgebra
280 lines
8.6 KiB
Rust
280 lines
8.6 KiB
Rust
#[cfg(feature = "serde-serialize")]
|
|
use serde::{Deserialize, Serialize};
|
|
|
|
use crate::allocator::Allocator;
|
|
use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN};
|
|
use crate::constraint::{SameNumberOfRows, ShapeConstraint};
|
|
use crate::dimension::{Dim, DimMin, DimMinimum};
|
|
use crate::storage::{Storage, StorageMut};
|
|
use simba::scalar::ComplexField;
|
|
|
|
use crate::linalg::lu;
|
|
use crate::linalg::PermutationSequence;
|
|
|
|
/// LU decomposition with full row and column pivoting.
|
|
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
|
#[cfg_attr(
|
|
feature = "serde-serialize",
|
|
serde(bound(serialize = "DefaultAllocator: Allocator<N, R, C> +
|
|
Allocator<(usize, usize), DimMinimum<R, C>>,
|
|
MatrixMN<N, R, C>: Serialize,
|
|
PermutationSequence<DimMinimum<R, C>>: Serialize"))
|
|
)]
|
|
#[cfg_attr(
|
|
feature = "serde-serialize",
|
|
serde(bound(deserialize = "DefaultAllocator: Allocator<N, R, C> +
|
|
Allocator<(usize, usize), DimMinimum<R, C>>,
|
|
MatrixMN<N, R, C>: Deserialize<'de>,
|
|
PermutationSequence<DimMinimum<R, C>>: Deserialize<'de>"))
|
|
)]
|
|
#[derive(Clone, Debug)]
|
|
pub struct FullPivLU<N: ComplexField, R: DimMin<C>, C: Dim>
|
|
where
|
|
DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
|
|
{
|
|
lu: MatrixMN<N, R, C>,
|
|
p: PermutationSequence<DimMinimum<R, C>>,
|
|
q: PermutationSequence<DimMinimum<R, C>>,
|
|
}
|
|
|
|
impl<N: ComplexField, R: DimMin<C>, C: Dim> Copy for FullPivLU<N, R, C>
|
|
where
|
|
DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
|
|
MatrixMN<N, R, C>: Copy,
|
|
PermutationSequence<DimMinimum<R, C>>: Copy,
|
|
{
|
|
}
|
|
|
|
impl<N: ComplexField, R: DimMin<C>, C: Dim> FullPivLU<N, R, C>
|
|
where
|
|
DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
|
|
{
|
|
/// Computes the LU decomposition with full pivoting of `matrix`.
|
|
///
|
|
/// This effectively computes `P, L, U, Q` such that `P * matrix * Q = LU`.
|
|
pub fn new(mut matrix: MatrixMN<N, R, C>) -> Self {
|
|
let (nrows, ncols) = matrix.data.shape();
|
|
let min_nrows_ncols = nrows.min(ncols);
|
|
|
|
let mut p = PermutationSequence::identity_generic(min_nrows_ncols);
|
|
let mut q = PermutationSequence::identity_generic(min_nrows_ncols);
|
|
|
|
if min_nrows_ncols.value() == 0 {
|
|
return Self {
|
|
lu: matrix,
|
|
p: p,
|
|
q: q,
|
|
};
|
|
}
|
|
|
|
for i in 0..min_nrows_ncols.value() {
|
|
let piv = matrix.slice_range(i.., i..).icamax_full();
|
|
let row_piv = piv.0 + i;
|
|
let col_piv = piv.1 + i;
|
|
let diag = matrix[(row_piv, col_piv)];
|
|
|
|
if diag.is_zero() {
|
|
// The remaining of the matrix is zero.
|
|
break;
|
|
}
|
|
|
|
matrix.swap_columns(i, col_piv);
|
|
q.append_permutation(i, col_piv);
|
|
|
|
if row_piv != i {
|
|
p.append_permutation(i, row_piv);
|
|
matrix.columns_range_mut(..i).swap_rows(i, row_piv);
|
|
lu::gauss_step_swap(&mut matrix, diag, i, row_piv);
|
|
} else {
|
|
lu::gauss_step(&mut matrix, diag, i);
|
|
}
|
|
}
|
|
|
|
Self {
|
|
lu: matrix,
|
|
p: p,
|
|
q: q,
|
|
}
|
|
}
|
|
|
|
#[doc(hidden)]
|
|
pub fn lu_internal(&self) -> &MatrixMN<N, R, C> {
|
|
&self.lu
|
|
}
|
|
|
|
/// The lower triangular matrix of this decomposition.
|
|
#[inline]
|
|
pub fn l(&self) -> MatrixMN<N, R, DimMinimum<R, C>>
|
|
where
|
|
DefaultAllocator: Allocator<N, R, DimMinimum<R, C>>,
|
|
{
|
|
let (nrows, ncols) = self.lu.data.shape();
|
|
let mut m = self.lu.columns_generic(0, nrows.min(ncols)).into_owned();
|
|
m.fill_upper_triangle(N::zero(), 1);
|
|
m.fill_diagonal(N::one());
|
|
m
|
|
}
|
|
|
|
/// The upper triangular matrix of this decomposition.
|
|
#[inline]
|
|
pub fn u(&self) -> MatrixMN<N, DimMinimum<R, C>, C>
|
|
where
|
|
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C>,
|
|
{
|
|
let (nrows, ncols) = self.lu.data.shape();
|
|
self.lu.rows_generic(0, nrows.min(ncols)).upper_triangle()
|
|
}
|
|
|
|
/// The row permutations of this decomposition.
|
|
#[inline]
|
|
pub fn p(&self) -> &PermutationSequence<DimMinimum<R, C>> {
|
|
&self.p
|
|
}
|
|
|
|
/// The column permutations of this decomposition.
|
|
#[inline]
|
|
pub fn q(&self) -> &PermutationSequence<DimMinimum<R, C>> {
|
|
&self.q
|
|
}
|
|
|
|
/// The two matrices of this decomposition and the row and column permutations: `(P, L, U, Q)`.
|
|
#[inline]
|
|
pub fn unpack(
|
|
self,
|
|
) -> (
|
|
PermutationSequence<DimMinimum<R, C>>,
|
|
MatrixMN<N, R, DimMinimum<R, C>>,
|
|
MatrixMN<N, DimMinimum<R, C>, C>,
|
|
PermutationSequence<DimMinimum<R, C>>,
|
|
)
|
|
where
|
|
DefaultAllocator: Allocator<N, R, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>, C>,
|
|
{
|
|
// Use reallocation for either l or u.
|
|
let l = self.l();
|
|
let u = self.u();
|
|
let p = self.p;
|
|
let q = self.q;
|
|
|
|
(p, l, u, q)
|
|
}
|
|
}
|
|
|
|
impl<N: ComplexField, D: DimMin<D, Output = D>> FullPivLU<N, D, D>
|
|
where
|
|
DefaultAllocator: Allocator<N, D, D> + Allocator<(usize, usize), D>,
|
|
{
|
|
/// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
|
|
///
|
|
/// Returns `None` if the decomposed matrix is not invertible.
|
|
pub fn solve<R2: Dim, C2: Dim, S2>(
|
|
&self,
|
|
b: &Matrix<N, R2, C2, S2>,
|
|
) -> Option<MatrixMN<N, R2, C2>>
|
|
where
|
|
S2: Storage<N, R2, C2>,
|
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
|
DefaultAllocator: Allocator<N, R2, C2>,
|
|
{
|
|
let mut res = b.clone_owned();
|
|
if self.solve_mut(&mut res) {
|
|
Some(res)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
|
|
///
|
|
/// If the decomposed matrix is not invertible, this returns `false` and its input `b` may
|
|
/// be overwritten with garbage.
|
|
pub fn solve_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<N, R2, C2, S2>) -> bool
|
|
where
|
|
S2: StorageMut<N, R2, C2>,
|
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
|
{
|
|
assert_eq!(
|
|
self.lu.nrows(),
|
|
b.nrows(),
|
|
"FullPivLU solve matrix dimension mismatch."
|
|
);
|
|
assert!(
|
|
self.lu.is_square(),
|
|
"FullPivLU solve: unable to solve a non-square system."
|
|
);
|
|
|
|
if self.is_invertible() {
|
|
self.p.permute_rows(b);
|
|
let _ = self.lu.solve_lower_triangular_with_diag_mut(b, N::one());
|
|
let _ = self.lu.solve_upper_triangular_mut(b);
|
|
self.q.inv_permute_rows(b);
|
|
|
|
true
|
|
} else {
|
|
false
|
|
}
|
|
}
|
|
|
|
/// Computes the inverse of the decomposed matrix.
|
|
///
|
|
/// Returns `None` if the decomposed matrix is not invertible.
|
|
pub fn try_inverse(&self) -> Option<MatrixN<N, D>> {
|
|
assert!(
|
|
self.lu.is_square(),
|
|
"FullPivLU inverse: unable to compute the inverse of a non-square matrix."
|
|
);
|
|
|
|
let (nrows, ncols) = self.lu.data.shape();
|
|
|
|
let mut res = MatrixN::identity_generic(nrows, ncols);
|
|
if self.solve_mut(&mut res) {
|
|
Some(res)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Indicates if the decomposed matrix is invertible.
|
|
pub fn is_invertible(&self) -> bool {
|
|
assert!(
|
|
self.lu.is_square(),
|
|
"FullPivLU: unable to test the invertibility of a non-square matrix."
|
|
);
|
|
|
|
let dim = self.lu.nrows();
|
|
!self.lu[(dim - 1, dim - 1)].is_zero()
|
|
}
|
|
|
|
/// Computes the determinant of the decomposed matrix.
|
|
pub fn determinant(&self) -> N {
|
|
assert!(
|
|
self.lu.is_square(),
|
|
"FullPivLU determinant: unable to compute the determinant of a non-square matrix."
|
|
);
|
|
|
|
let dim = self.lu.nrows();
|
|
let mut res = self.lu[(dim - 1, dim - 1)];
|
|
if !res.is_zero() {
|
|
for i in 0..dim - 1 {
|
|
res *= unsafe { *self.lu.get_unchecked((i, i)) };
|
|
}
|
|
|
|
res * self.p.determinant() * self.q.determinant()
|
|
} else {
|
|
N::zero()
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<N: ComplexField, R: DimMin<C>, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
|
|
where
|
|
DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
|
|
{
|
|
/// Computes the LU decomposition with full pivoting of `matrix`.
|
|
///
|
|
/// This effectively computes `P, L, U, Q` such that `P * matrix * Q = LU`.
|
|
pub fn full_piv_lu(self) -> FullPivLU<N, R, C> {
|
|
FullPivLU::new(self.into_owned())
|
|
}
|
|
}
|