forked from M-Labs/nalgebra
354 lines
11 KiB
Rust
354 lines
11 KiB
Rust
// Non-conventional component-wise operators.
|
|
|
|
use num::{Signed, Zero};
|
|
use std::ops::{Add, Mul};
|
|
|
|
use simba::scalar::{ClosedDiv, ClosedMul};
|
|
use simba::simd::SimdPartialOrd;
|
|
|
|
use crate::base::allocator::{Allocator, SameShapeAllocator};
|
|
use crate::base::constraint::{SameNumberOfColumns, SameNumberOfRows, ShapeConstraint};
|
|
use crate::base::dimension::Dim;
|
|
use crate::base::storage::{Storage, StorageMut};
|
|
use crate::base::{DefaultAllocator, Matrix, MatrixSum, OMatrix, Scalar};
|
|
use crate::ClosedAdd;
|
|
|
|
/// The type of the result of a matrix component-wise operation.
|
|
pub type MatrixComponentOp<T, R1, C1, R2, C2> = MatrixSum<T, R1, C1, R2, C2>;
|
|
|
|
impl<T: Scalar, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
|
|
/// Computes the component-wise absolute value.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use nalgebra::Matrix2;
|
|
/// let a = Matrix2::new(0.0, 1.0,
|
|
/// -2.0, -3.0);
|
|
/// assert_eq!(a.abs(), Matrix2::new(0.0, 1.0, 2.0, 3.0))
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn abs(&self) -> OMatrix<T, R, C>
|
|
where
|
|
T: Signed,
|
|
DefaultAllocator: Allocator<T, R, C>,
|
|
{
|
|
let mut res = self.clone_owned();
|
|
|
|
for e in res.iter_mut() {
|
|
*e = e.abs();
|
|
}
|
|
|
|
res
|
|
}
|
|
|
|
// TODO: add other operators like component_ln, component_pow, etc. ?
|
|
}
|
|
|
|
macro_rules! component_binop_impl(
|
|
($($binop: ident, $binop_mut: ident, $binop_assign: ident, $cmpy: ident, $Trait: ident . $op: ident . $op_assign: ident, $desc:expr, $desc_cmpy:expr, $desc_mut:expr);* $(;)*) => {$(
|
|
#[doc = $desc]
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn $binop<R2, C2, SB>(&self, rhs: &Matrix<T, R2, C2, SB>) -> MatrixComponentOp<T, R1, C1, R2, C2>
|
|
where T: $Trait,
|
|
R2: Dim, C2: Dim,
|
|
SB: Storage<T, R2, C2>,
|
|
DefaultAllocator: SameShapeAllocator<T, R1, C1, R2, C2>,
|
|
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
|
|
|
|
assert_eq!(self.shape(), rhs.shape(), "Componentwise mul/div: mismatched matrix dimensions.");
|
|
let mut res = self.clone_owned_sum();
|
|
|
|
for j in 0 .. res.ncols() {
|
|
for i in 0 .. res.nrows() {
|
|
unsafe {
|
|
res.get_unchecked_mut((i, j)).$op_assign(rhs.get_unchecked((i, j)).clone());
|
|
}
|
|
}
|
|
}
|
|
|
|
res
|
|
}
|
|
|
|
// componentwise binop plus Y.
|
|
#[doc = $desc_cmpy]
|
|
#[inline]
|
|
pub fn $cmpy<R2, C2, SB, R3, C3, SC>(&mut self, alpha: T, a: &Matrix<T, R2, C2, SB>, b: &Matrix<T, R3, C3, SC>, beta: T)
|
|
where T: $Trait + Zero + Mul<T, Output = T> + Add<T, Output = T>,
|
|
R2: Dim, C2: Dim,
|
|
R3: Dim, C3: Dim,
|
|
SA: StorageMut<T, R1, C1>,
|
|
SB: Storage<T, R2, C2>,
|
|
SC: Storage<T, R3, C3>,
|
|
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> +
|
|
SameNumberOfRows<R1, R3> + SameNumberOfColumns<C1, C3> {
|
|
assert_eq!(self.shape(), a.shape(), "Componentwise mul/div: mismatched matrix dimensions.");
|
|
assert_eq!(self.shape(), b.shape(), "Componentwise mul/div: mismatched matrix dimensions.");
|
|
|
|
if beta.is_zero() {
|
|
for j in 0 .. self.ncols() {
|
|
for i in 0 .. self.nrows() {
|
|
unsafe {
|
|
let res = alpha.clone() * a.get_unchecked((i, j)).clone().$op(b.get_unchecked((i, j)).clone());
|
|
*self.get_unchecked_mut((i, j)) = res;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
for j in 0 .. self.ncols() {
|
|
for i in 0 .. self.nrows() {
|
|
unsafe {
|
|
let res = alpha.clone() * a.get_unchecked((i, j)).clone().$op(b.get_unchecked((i, j)).clone());
|
|
*self.get_unchecked_mut((i, j)) = beta.clone() * self.get_unchecked((i, j)).clone() + res;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[doc = $desc_mut]
|
|
#[inline]
|
|
pub fn $binop_assign<R2, C2, SB>(&mut self, rhs: &Matrix<T, R2, C2, SB>)
|
|
where T: $Trait,
|
|
R2: Dim,
|
|
C2: Dim,
|
|
SA: StorageMut<T, R1, C1>,
|
|
SB: Storage<T, R2, C2>,
|
|
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
|
|
|
|
assert_eq!(self.shape(), rhs.shape(), "Componentwise mul/div: mismatched matrix dimensions.");
|
|
|
|
for j in 0 .. self.ncols() {
|
|
for i in 0 .. self.nrows() {
|
|
unsafe {
|
|
self.get_unchecked_mut((i, j)).$op_assign(rhs.get_unchecked((i, j)).clone());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[doc = $desc_mut]
|
|
#[inline]
|
|
#[deprecated(note = "This is renamed using the `_assign` suffix instead of the `_mut` suffix.")]
|
|
pub fn $binop_mut<R2, C2, SB>(&mut self, rhs: &Matrix<T, R2, C2, SB>)
|
|
where T: $Trait,
|
|
R2: Dim,
|
|
C2: Dim,
|
|
SA: StorageMut<T, R1, C1>,
|
|
SB: Storage<T, R2, C2>,
|
|
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
|
|
self.$binop_assign(rhs)
|
|
}
|
|
)*}
|
|
);
|
|
|
|
/// # Componentwise operations
|
|
impl<T: Scalar, R1: Dim, C1: Dim, SA: Storage<T, R1, C1>> Matrix<T, R1, C1, SA> {
|
|
component_binop_impl!(
|
|
component_mul, component_mul_mut, component_mul_assign, cmpy, ClosedMul.mul.mul_assign,
|
|
r"
|
|
Componentwise matrix or vector multiplication.
|
|
|
|
# Example
|
|
|
|
```
|
|
# use nalgebra::Matrix2;
|
|
let a = Matrix2::new(0.0, 1.0, 2.0, 3.0);
|
|
let b = Matrix2::new(4.0, 5.0, 6.0, 7.0);
|
|
let expected = Matrix2::new(0.0, 5.0, 12.0, 21.0);
|
|
|
|
assert_eq!(a.component_mul(&b), expected);
|
|
```
|
|
",
|
|
r"
|
|
Computes componentwise `self[i] = alpha * a[i] * b[i] + beta * self[i]`.
|
|
|
|
# Example
|
|
```
|
|
# use nalgebra::Matrix2;
|
|
let mut m = Matrix2::new(0.0, 1.0, 2.0, 3.0);
|
|
let a = Matrix2::new(0.0, 1.0, 2.0, 3.0);
|
|
let b = Matrix2::new(4.0, 5.0, 6.0, 7.0);
|
|
let expected = (a.component_mul(&b) * 5.0) + m * 10.0;
|
|
|
|
m.cmpy(5.0, &a, &b, 10.0);
|
|
assert_eq!(m, expected);
|
|
```
|
|
",
|
|
r"
|
|
Inplace componentwise matrix or vector multiplication.
|
|
|
|
# Example
|
|
```
|
|
# use nalgebra::Matrix2;
|
|
let mut a = Matrix2::new(0.0, 1.0, 2.0, 3.0);
|
|
let b = Matrix2::new(4.0, 5.0, 6.0, 7.0);
|
|
let expected = Matrix2::new(0.0, 5.0, 12.0, 21.0);
|
|
|
|
a.component_mul_assign(&b);
|
|
|
|
assert_eq!(a, expected);
|
|
```
|
|
";
|
|
component_div, component_div_mut, component_div_assign, cdpy, ClosedDiv.div.div_assign,
|
|
r"
|
|
Componentwise matrix or vector division.
|
|
|
|
# Example
|
|
|
|
```
|
|
# use nalgebra::Matrix2;
|
|
let a = Matrix2::new(0.0, 1.0, 2.0, 3.0);
|
|
let b = Matrix2::new(4.0, 5.0, 6.0, 7.0);
|
|
let expected = Matrix2::new(0.0, 1.0 / 5.0, 2.0 / 6.0, 3.0 / 7.0);
|
|
|
|
assert_eq!(a.component_div(&b), expected);
|
|
```
|
|
",
|
|
r"
|
|
Computes componentwise `self[i] = alpha * a[i] / b[i] + beta * self[i]`.
|
|
|
|
# Example
|
|
```
|
|
# use nalgebra::Matrix2;
|
|
let mut m = Matrix2::new(0.0, 1.0, 2.0, 3.0);
|
|
let a = Matrix2::new(4.0, 5.0, 6.0, 7.0);
|
|
let b = Matrix2::new(4.0, 5.0, 6.0, 7.0);
|
|
let expected = (a.component_div(&b) * 5.0) + m * 10.0;
|
|
|
|
m.cdpy(5.0, &a, &b, 10.0);
|
|
assert_eq!(m, expected);
|
|
```
|
|
",
|
|
r"
|
|
Inplace componentwise matrix or vector division.
|
|
|
|
# Example
|
|
```
|
|
# use nalgebra::Matrix2;
|
|
let mut a = Matrix2::new(0.0, 1.0, 2.0, 3.0);
|
|
let b = Matrix2::new(4.0, 5.0, 6.0, 7.0);
|
|
let expected = Matrix2::new(0.0, 1.0 / 5.0, 2.0 / 6.0, 3.0 / 7.0);
|
|
|
|
a.component_div_assign(&b);
|
|
|
|
assert_eq!(a, expected);
|
|
```
|
|
";
|
|
// TODO: add other operators like bitshift, etc. ?
|
|
);
|
|
|
|
/// Computes the infimum (aka. componentwise min) of two matrices/vectors.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use nalgebra::Matrix2;
|
|
/// let u = Matrix2::new(4.0, 2.0, 1.0, -2.0);
|
|
/// let v = Matrix2::new(2.0, 4.0, -2.0, 1.0);
|
|
/// let expected = Matrix2::new(2.0, 2.0, -2.0, -2.0);
|
|
/// assert_eq!(u.inf(&v), expected)
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn inf(&self, other: &Self) -> OMatrix<T, R1, C1>
|
|
where
|
|
T: SimdPartialOrd,
|
|
DefaultAllocator: Allocator<T, R1, C1>,
|
|
{
|
|
self.zip_map(other, |a, b| a.simd_min(b))
|
|
}
|
|
|
|
/// Computes the supremum (aka. componentwise max) of two matrices/vectors.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use nalgebra::Matrix2;
|
|
/// let u = Matrix2::new(4.0, 2.0, 1.0, -2.0);
|
|
/// let v = Matrix2::new(2.0, 4.0, -2.0, 1.0);
|
|
/// let expected = Matrix2::new(4.0, 4.0, 1.0, 1.0);
|
|
/// assert_eq!(u.sup(&v), expected)
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn sup(&self, other: &Self) -> OMatrix<T, R1, C1>
|
|
where
|
|
T: SimdPartialOrd,
|
|
DefaultAllocator: Allocator<T, R1, C1>,
|
|
{
|
|
self.zip_map(other, |a, b| a.simd_max(b))
|
|
}
|
|
|
|
/// Computes the (infimum, supremum) of two matrices/vectors.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use nalgebra::Matrix2;
|
|
/// let u = Matrix2::new(4.0, 2.0, 1.0, -2.0);
|
|
/// let v = Matrix2::new(2.0, 4.0, -2.0, 1.0);
|
|
/// let expected = (Matrix2::new(2.0, 2.0, -2.0, -2.0), Matrix2::new(4.0, 4.0, 1.0, 1.0));
|
|
/// assert_eq!(u.inf_sup(&v), expected)
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn inf_sup(&self, other: &Self) -> (OMatrix<T, R1, C1>, OMatrix<T, R1, C1>)
|
|
where
|
|
T: SimdPartialOrd,
|
|
DefaultAllocator: Allocator<T, R1, C1>,
|
|
{
|
|
// TODO: can this be optimized?
|
|
(self.inf(other), self.sup(other))
|
|
}
|
|
|
|
/// Adds a scalar to `self`.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use nalgebra::Matrix2;
|
|
/// let u = Matrix2::new(1.0, 2.0, 3.0, 4.0);
|
|
/// let s = 10.0;
|
|
/// let expected = Matrix2::new(11.0, 12.0, 13.0, 14.0);
|
|
/// assert_eq!(u.add_scalar(s), expected)
|
|
/// ```
|
|
#[inline]
|
|
#[must_use = "Did you mean to use add_scalar_mut()?"]
|
|
pub fn add_scalar(&self, rhs: T) -> OMatrix<T, R1, C1>
|
|
where
|
|
T: ClosedAdd,
|
|
DefaultAllocator: Allocator<T, R1, C1>,
|
|
{
|
|
let mut res = self.clone_owned();
|
|
res.add_scalar_mut(rhs);
|
|
res
|
|
}
|
|
|
|
/// Adds a scalar to `self` in-place.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use nalgebra::Matrix2;
|
|
/// let mut u = Matrix2::new(1.0, 2.0, 3.0, 4.0);
|
|
/// let s = 10.0;
|
|
/// u.add_scalar_mut(s);
|
|
/// let expected = Matrix2::new(11.0, 12.0, 13.0, 14.0);
|
|
/// assert_eq!(u, expected)
|
|
/// ```
|
|
#[inline]
|
|
pub fn add_scalar_mut(&mut self, rhs: T)
|
|
where
|
|
T: ClosedAdd,
|
|
SA: StorageMut<T, R1, C1>,
|
|
{
|
|
for e in self.iter_mut() {
|
|
*e += rhs.clone()
|
|
}
|
|
}
|
|
}
|