forked from M-Labs/nalgebra
256 lines
7.4 KiB
Rust
256 lines
7.4 KiB
Rust
use crate::{
|
|
DualQuaternion, Isometry3, Quaternion, Scalar, SimdRealField, Translation3, UnitDualQuaternion,
|
|
UnitQuaternion,
|
|
};
|
|
use num::{One, Zero};
|
|
#[cfg(feature = "arbitrary")]
|
|
use quickcheck::{Arbitrary, Gen};
|
|
use simba::scalar::SupersetOf;
|
|
|
|
impl<T: Scalar> DualQuaternion<T> {
|
|
/// Creates a dual quaternion from its rotation and translation components.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::{DualQuaternion, Quaternion};
|
|
/// let rot = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
|
/// let trans = Quaternion::new(5.0, 6.0, 7.0, 8.0);
|
|
///
|
|
/// let dq = DualQuaternion::from_real_and_dual(rot, trans);
|
|
/// assert_eq!(dq.real.w, 1.0);
|
|
/// ```
|
|
#[inline]
|
|
pub fn from_real_and_dual(real: Quaternion<T>, dual: Quaternion<T>) -> Self {
|
|
Self { real, dual }
|
|
}
|
|
|
|
/// The dual quaternion multiplicative identity.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use nalgebra::{DualQuaternion, Quaternion};
|
|
///
|
|
/// let dq1 = DualQuaternion::identity();
|
|
/// let dq2 = DualQuaternion::from_real_and_dual(
|
|
/// Quaternion::new(1.,2.,3.,4.),
|
|
/// Quaternion::new(5.,6.,7.,8.)
|
|
/// );
|
|
///
|
|
/// assert_eq!(dq1 * dq2, dq2);
|
|
/// assert_eq!(dq2 * dq1, dq2);
|
|
/// ```
|
|
#[inline]
|
|
pub fn identity() -> Self
|
|
where
|
|
T: SimdRealField,
|
|
{
|
|
Self::from_real_and_dual(
|
|
Quaternion::from_real(T::one()),
|
|
Quaternion::from_real(T::zero()),
|
|
)
|
|
}
|
|
|
|
/// Cast the components of `self` to another type.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::{Quaternion, DualQuaternion};
|
|
/// let q = DualQuaternion::from_real(Quaternion::new(1.0f64, 2.0, 3.0, 4.0));
|
|
/// let q2 = q.cast::<f32>();
|
|
/// assert_eq!(q2, DualQuaternion::from_real(Quaternion::new(1.0f32, 2.0, 3.0, 4.0)));
|
|
/// ```
|
|
pub fn cast<To: Scalar>(self) -> DualQuaternion<To>
|
|
where
|
|
DualQuaternion<To>: SupersetOf<Self>,
|
|
{
|
|
crate::convert(self)
|
|
}
|
|
}
|
|
|
|
impl<T: SimdRealField> DualQuaternion<T>
|
|
where
|
|
T::Element: SimdRealField,
|
|
{
|
|
/// Creates a dual quaternion from only its real part, with no translation
|
|
/// component.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::{DualQuaternion, Quaternion};
|
|
/// let rot = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
|
///
|
|
/// let dq = DualQuaternion::from_real(rot);
|
|
/// assert_eq!(dq.real.w, 1.0);
|
|
/// assert_eq!(dq.dual.w, 0.0);
|
|
/// ```
|
|
#[inline]
|
|
pub fn from_real(real: Quaternion<T>) -> Self {
|
|
Self {
|
|
real,
|
|
dual: Quaternion::zero(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<T: SimdRealField> One for DualQuaternion<T>
|
|
where
|
|
T::Element: SimdRealField,
|
|
{
|
|
#[inline]
|
|
fn one() -> Self {
|
|
Self::identity()
|
|
}
|
|
}
|
|
|
|
impl<T: SimdRealField> Zero for DualQuaternion<T>
|
|
where
|
|
T::Element: SimdRealField,
|
|
{
|
|
#[inline]
|
|
fn zero() -> Self {
|
|
DualQuaternion::from_real_and_dual(Quaternion::zero(), Quaternion::zero())
|
|
}
|
|
|
|
#[inline]
|
|
fn is_zero(&self) -> bool {
|
|
self.real.is_zero() && self.dual.is_zero()
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "arbitrary")]
|
|
impl<T> Arbitrary for DualQuaternion<T>
|
|
where
|
|
T: SimdRealField + Arbitrary + Send,
|
|
T::Element: SimdRealField,
|
|
{
|
|
#[inline]
|
|
fn arbitrary(rng: &mut Gen) -> Self {
|
|
Self::from_real_and_dual(Arbitrary::arbitrary(rng), Arbitrary::arbitrary(rng))
|
|
}
|
|
}
|
|
|
|
impl<T: SimdRealField> UnitDualQuaternion<T> {
|
|
/// The unit dual quaternion multiplicative identity, which also represents
|
|
/// the identity transformation as an isometry.
|
|
///
|
|
/// ```
|
|
/// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3, Point3};
|
|
/// let ident = UnitDualQuaternion::identity();
|
|
/// let point = Point3::new(1.0, -4.3, 3.33);
|
|
///
|
|
/// assert_eq!(ident * point, point);
|
|
/// assert_eq!(ident, ident.inverse());
|
|
/// ```
|
|
#[inline]
|
|
pub fn identity() -> Self {
|
|
Self::new_unchecked(DualQuaternion::identity())
|
|
}
|
|
|
|
/// Cast the components of `self` to another type.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::UnitDualQuaternion;
|
|
/// let q = UnitDualQuaternion::<f64>::identity();
|
|
/// let q2 = q.cast::<f32>();
|
|
/// assert_eq!(q2, UnitDualQuaternion::<f32>::identity());
|
|
/// ```
|
|
pub fn cast<To: Scalar>(self) -> UnitDualQuaternion<To>
|
|
where
|
|
UnitDualQuaternion<To>: SupersetOf<Self>,
|
|
{
|
|
crate::convert(self)
|
|
}
|
|
}
|
|
|
|
impl<T: SimdRealField> UnitDualQuaternion<T>
|
|
where
|
|
T::Element: SimdRealField,
|
|
{
|
|
/// Return a dual quaternion representing the translation and orientation
|
|
/// given by the provided rotation quaternion and translation vector.
|
|
///
|
|
/// ```
|
|
/// # #[macro_use] extern crate approx;
|
|
/// # use nalgebra::{UnitDualQuaternion, UnitQuaternion, Vector3, Point3};
|
|
/// let dq = UnitDualQuaternion::from_parts(
|
|
/// Vector3::new(0.0, 3.0, 0.0).into(),
|
|
/// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
|
|
/// );
|
|
/// let point = Point3::new(1.0, 2.0, 3.0);
|
|
///
|
|
/// assert_relative_eq!(dq * point, Point3::new(1.0, 0.0, 2.0), epsilon = 1.0e-6);
|
|
/// ```
|
|
#[inline]
|
|
pub fn from_parts(translation: Translation3<T>, rotation: UnitQuaternion<T>) -> Self {
|
|
let half: T = crate::convert(0.5f64);
|
|
UnitDualQuaternion::new_unchecked(DualQuaternion {
|
|
real: rotation.clone().into_inner(),
|
|
dual: Quaternion::from_parts(T::zero(), translation.vector)
|
|
* rotation.clone().into_inner()
|
|
* half,
|
|
})
|
|
}
|
|
|
|
/// Return a unit dual quaternion representing the translation and orientation
|
|
/// given by the provided isometry.
|
|
///
|
|
/// ```
|
|
/// # #[macro_use] extern crate approx;
|
|
/// # use nalgebra::{Isometry3, UnitDualQuaternion, UnitQuaternion, Vector3, Point3};
|
|
/// let iso = Isometry3::from_parts(
|
|
/// Vector3::new(0.0, 3.0, 0.0).into(),
|
|
/// UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
|
|
/// );
|
|
/// let dq = UnitDualQuaternion::from_isometry(&iso);
|
|
/// let point = Point3::new(1.0, 2.0, 3.0);
|
|
///
|
|
/// assert_relative_eq!(dq * point, iso * point, epsilon = 1.0e-6);
|
|
/// ```
|
|
#[inline]
|
|
pub fn from_isometry(isometry: &Isometry3<T>) -> Self {
|
|
UnitDualQuaternion::from_parts(isometry.translation, isometry.rotation)
|
|
}
|
|
|
|
/// Creates a dual quaternion from a unit quaternion rotation.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # #[macro_use] extern crate approx;
|
|
/// # use nalgebra::{UnitQuaternion, UnitDualQuaternion, Quaternion};
|
|
/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
|
|
/// let rot = UnitQuaternion::new_normalize(q);
|
|
///
|
|
/// let dq = UnitDualQuaternion::from_rotation(rot);
|
|
/// assert_relative_eq!(dq.as_ref().real.norm(), 1.0, epsilon = 1.0e-6);
|
|
/// assert_eq!(dq.as_ref().dual.norm(), 0.0);
|
|
/// ```
|
|
#[inline]
|
|
pub fn from_rotation(rotation: UnitQuaternion<T>) -> Self {
|
|
Self::new_unchecked(DualQuaternion::from_real(rotation.into_inner()))
|
|
}
|
|
}
|
|
|
|
impl<T: SimdRealField> One for UnitDualQuaternion<T>
|
|
where
|
|
T::Element: SimdRealField,
|
|
{
|
|
#[inline]
|
|
fn one() -> Self {
|
|
Self::identity()
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "arbitrary")]
|
|
impl<T> Arbitrary for UnitDualQuaternion<T>
|
|
where
|
|
T: SimdRealField + Arbitrary + Send,
|
|
T::Element: SimdRealField,
|
|
{
|
|
#[inline]
|
|
fn arbitrary(rng: &mut Gen) -> Self {
|
|
Self::new_normalize(Arbitrary::arbitrary(rng))
|
|
}
|
|
}
|