forked from M-Labs/nalgebra
134 lines
4.7 KiB
Rust
134 lines
4.7 KiB
Rust
#![cfg(feature = "arbitrary")]
|
|
|
|
use core::helper::{RandScalar, RandComplex};
|
|
|
|
macro_rules! gen_tests(
|
|
($module: ident, $scalar: ty) => {
|
|
mod $module {
|
|
use na::{DMatrix, DVector, Matrix3x5, Matrix4, Matrix4x3, Matrix5x3, Vector4};
|
|
use std::cmp;
|
|
use core::helper::{RandScalar, RandComplex};
|
|
|
|
quickcheck! {
|
|
fn qr(m: DMatrix<$scalar>) -> bool {
|
|
let m = m.map(|e| e.0);
|
|
let qr = m.clone().qr();
|
|
let q = qr.q();
|
|
let r = qr.r();
|
|
|
|
println!("m: {}", m);
|
|
println!("qr: {}", &q * &r);
|
|
|
|
relative_eq!(m, &q * r, epsilon = 1.0e-7) &&
|
|
q.is_orthogonal(1.0e-7)
|
|
}
|
|
|
|
fn qr_static_5_3(m: Matrix5x3<$scalar>) -> bool {
|
|
let m = m.map(|e| e.0);
|
|
let qr = m.qr();
|
|
let q = qr.q();
|
|
let r = qr.r();
|
|
|
|
relative_eq!(m, q * r, epsilon = 1.0e-7) &&
|
|
q.is_orthogonal(1.0e-7)
|
|
}
|
|
|
|
fn qr_static_3_5(m: Matrix3x5<$scalar>) -> bool {
|
|
let m = m.map(|e| e.0);
|
|
let qr = m.qr();
|
|
let q = qr.q();
|
|
let r = qr.r();
|
|
|
|
relative_eq!(m, q * r, epsilon = 1.0e-7) &&
|
|
q.is_orthogonal(1.0e-7)
|
|
}
|
|
|
|
fn qr_static_square(m: Matrix4<$scalar>) -> bool {
|
|
let m = m.map(|e| e.0);
|
|
let qr = m.qr();
|
|
let q = qr.q();
|
|
let r = qr.r();
|
|
|
|
println!("{}{}{}{}", q, r, q * r, m);
|
|
|
|
relative_eq!(m, q * r, epsilon = 1.0e-7) &&
|
|
q.is_orthogonal(1.0e-7)
|
|
}
|
|
|
|
fn qr_solve(n: usize, nb: usize) -> bool {
|
|
if n != 0 && nb != 0 {
|
|
let n = cmp::min(n, 50); // To avoid slowing down the test too much.
|
|
let nb = cmp::min(nb, 50); // To avoid slowing down the test too much.
|
|
let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0);
|
|
|
|
let qr = m.clone().qr();
|
|
let b1 = DVector::<$scalar>::new_random(n).map(|e| e.0);
|
|
let b2 = DMatrix::<$scalar>::new_random(n, nb).map(|e| e.0);
|
|
|
|
if qr.is_invertible() {
|
|
let sol1 = qr.solve(&b1).unwrap();
|
|
let sol2 = qr.solve(&b2).unwrap();
|
|
|
|
return relative_eq!(&m * sol1, b1, epsilon = 1.0e-6) &&
|
|
relative_eq!(&m * sol2, b2, epsilon = 1.0e-6)
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
fn qr_solve_static(m: Matrix4<$scalar>) -> bool {
|
|
let m = m.map(|e| e.0);
|
|
let qr = m.qr();
|
|
let b1 = Vector4::<$scalar>::new_random().map(|e| e.0);
|
|
let b2 = Matrix4x3::<$scalar>::new_random().map(|e| e.0);
|
|
|
|
if qr.is_invertible() {
|
|
let sol1 = qr.solve(&b1).unwrap();
|
|
let sol2 = qr.solve(&b2).unwrap();
|
|
|
|
relative_eq!(m * sol1, b1, epsilon = 1.0e-6) &&
|
|
relative_eq!(m * sol2, b2, epsilon = 1.0e-6)
|
|
}
|
|
else {
|
|
false
|
|
}
|
|
}
|
|
|
|
fn qr_inverse(n: usize) -> bool {
|
|
let n = cmp::max(1, cmp::min(n, 15)); // To avoid slowing down the test too much.
|
|
let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0);
|
|
|
|
if let Some(m1) = m.clone().qr().try_inverse() {
|
|
let id1 = &m * &m1;
|
|
let id2 = &m1 * &m;
|
|
|
|
id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5)
|
|
}
|
|
else {
|
|
true
|
|
}
|
|
}
|
|
|
|
fn qr_inverse_static(m: Matrix4<$scalar>) -> bool {
|
|
let m = m.map(|e| e.0);
|
|
let qr = m.qr();
|
|
|
|
if let Some(m1) = qr.try_inverse() {
|
|
let id1 = &m * &m1;
|
|
let id2 = &m1 * &m;
|
|
|
|
id1.is_identity(1.0e-5) && id2.is_identity(1.0e-5)
|
|
}
|
|
else {
|
|
true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
);
|
|
|
|
gen_tests!(complex, RandComplex<f64>);
|
|
gen_tests!(f64, RandScalar<f64>);
|