nalgebra/src/base/unit.rs
Benjamin Saunders 0541f13b26 Concise Debug impls
Replace the verbose derived (or nearly equivalent) Debug impls for
several newtypes with explicit impls that forward to the inner type,
making readable diagnostics logging much easier.
2021-09-12 10:56:25 -07:00

433 lines
13 KiB
Rust

use std::fmt;
#[cfg(feature = "abomonation-serialize")]
use std::io::{Result as IOResult, Write};
use std::ops::Deref;
#[cfg(feature = "serde-serialize-no-std")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};
#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;
use crate::allocator::Allocator;
use crate::base::DefaultAllocator;
use crate::storage::RawStorage;
use crate::{Dim, Matrix, OMatrix, RealField, Scalar, SimdComplexField, SimdRealField};
/// A wrapper that ensures the underlying algebraic entity has a unit norm.
///
/// **It is likely that the only piece of documentation that you need in this page are:**
/// - **[The construction with normalization](#construction-with-normalization)**
/// - **[Data extraction and construction without normalization](#data-extraction-and-construction-without-normalization)**
/// - **[Interpolation between two unit vectors](#interpolation-between-two-unit-vectors)**
///
/// All the other impl blocks you will see in this page are about [`UnitComplex`](crate::UnitComplex)
/// and [`UnitQuaternion`](crate::UnitQuaternion); both built on top of `Unit`. If you are interested
/// in their documentation, read their dedicated pages directly.
#[repr(transparent)]
#[derive(Clone, Hash, Copy)]
pub struct Unit<T> {
pub(crate) value: T,
}
impl<T: fmt::Debug> fmt::Debug for Unit<T> {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
self.value.fmt(formatter)
}
}
#[cfg(feature = "bytemuck")]
unsafe impl<T> bytemuck::Zeroable for Unit<T> where T: bytemuck::Zeroable {}
#[cfg(feature = "bytemuck")]
unsafe impl<T> bytemuck::Pod for Unit<T> where T: bytemuck::Pod {}
#[cfg(feature = "serde-serialize-no-std")]
impl<T: Serialize> Serialize for Unit<T> {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
self.value.serialize(serializer)
}
}
#[cfg(feature = "serde-serialize-no-std")]
impl<'de, T: Deserialize<'de>> Deserialize<'de> for Unit<T> {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
T::deserialize(deserializer).map(|x| Unit { value: x })
}
}
#[cfg(feature = "abomonation-serialize")]
impl<T: Abomonation> Abomonation for Unit<T> {
unsafe fn entomb<W: Write>(&self, writer: &mut W) -> IOResult<()> {
self.value.entomb(writer)
}
fn extent(&self) -> usize {
self.value.extent()
}
unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
self.value.exhume(bytes)
}
}
#[cfg(feature = "rkyv-serialize-no-std")]
mod rkyv_impl {
use super::Unit;
use rkyv::{offset_of, project_struct, Archive, Deserialize, Fallible, Serialize};
impl<T: Archive> Archive for Unit<T> {
type Archived = Unit<T::Archived>;
type Resolver = T::Resolver;
fn resolve(
&self,
pos: usize,
resolver: Self::Resolver,
out: &mut ::core::mem::MaybeUninit<Self::Archived>,
) {
self.value.resolve(
pos + offset_of!(Self::Archived, value),
resolver,
project_struct!(out: Self::Archived => value),
);
}
}
impl<T: Serialize<S>, S: Fallible + ?Sized> Serialize<S> for Unit<T> {
fn serialize(&self, serializer: &mut S) -> Result<Self::Resolver, S::Error> {
self.value.serialize(serializer)
}
}
impl<T: Archive, D: Fallible + ?Sized> Deserialize<Unit<T>, D> for Unit<T::Archived>
where
T::Archived: Deserialize<T, D>,
{
fn deserialize(&self, deserializer: &mut D) -> Result<Unit<T>, D::Error> {
Ok(Unit {
value: self.value.deserialize(deserializer)?,
})
}
}
}
impl<T, R, C, S> PartialEq for Unit<Matrix<T, R, C, S>>
where
T: Scalar + PartialEq,
R: Dim,
C: Dim,
S: RawStorage<T, R, C>,
{
#[inline]
fn eq(&self, rhs: &Self) -> bool {
self.value.eq(&rhs.value)
}
}
impl<T, R, C, S> Eq for Unit<Matrix<T, R, C, S>>
where
T: Scalar + Eq,
R: Dim,
C: Dim,
S: RawStorage<T, R, C>,
{
}
/// Trait implemented by entities scan be be normalized and put in an `Unit` struct.
pub trait Normed {
/// The type of the norm.
type Norm: SimdRealField;
/// Computes the norm.
fn norm(&self) -> Self::Norm;
/// Computes the squared norm.
fn norm_squared(&self) -> Self::Norm;
/// Multiply `self` by n.
fn scale_mut(&mut self, n: Self::Norm);
/// Divides `self` by n.
fn unscale_mut(&mut self, n: Self::Norm);
}
/// # Construction with normalization
impl<T: Normed> Unit<T> {
/// Normalize the given vector and return it wrapped on a `Unit` structure.
#[inline]
pub fn new_normalize(value: T) -> Self {
Self::new_and_get(value).0
}
/// Attempts to normalize the given vector and return it wrapped on a `Unit` structure.
///
/// Returns `None` if the norm was smaller or equal to `min_norm`.
#[inline]
pub fn try_new(value: T, min_norm: T::Norm) -> Option<Self>
where
T::Norm: RealField,
{
Self::try_new_and_get(value, min_norm).map(|res| res.0)
}
/// Normalize the given vector and return it wrapped on a `Unit` structure and its norm.
#[inline]
pub fn new_and_get(mut value: T) -> (Self, T::Norm) {
let n = value.norm();
value.unscale_mut(n.clone());
(Unit { value }, n)
}
/// Normalize the given vector and return it wrapped on a `Unit` structure and its norm.
///
/// Returns `None` if the norm was smaller or equal to `min_norm`.
#[inline]
pub fn try_new_and_get(mut value: T, min_norm: T::Norm) -> Option<(Self, T::Norm)>
where
T::Norm: RealField,
{
let sq_norm = value.norm_squared();
if sq_norm > min_norm.clone() * min_norm {
let n = sq_norm.simd_sqrt();
value.unscale_mut(n.clone());
Some((Unit { value }, n))
} else {
None
}
}
/// Normalizes this vector again. This is useful when repeated computations
/// might cause a drift in the norm because of float inaccuracies.
///
/// Returns the norm before re-normalization. See `.renormalize_fast` for a faster alternative
/// that may be slightly less accurate if `self` drifted significantly from having a unit length.
#[inline]
pub fn renormalize(&mut self) -> T::Norm {
let n = self.norm();
self.value.unscale_mut(n.clone());
n
}
/// Normalizes this vector again using a first-order Taylor approximation.
/// This is useful when repeated computations might cause a drift in the norm
/// because of float inaccuracies.
#[inline]
pub fn renormalize_fast(&mut self) {
let sq_norm = self.value.norm_squared();
let three: T::Norm = crate::convert(3.0);
let half: T::Norm = crate::convert(0.5);
self.value.scale_mut(half * (three - sq_norm));
}
}
/// # Data extraction and construction without normalization
impl<T> Unit<T> {
/// Wraps the given value, assuming it is already normalized.
#[inline]
pub const fn new_unchecked(value: T) -> Self {
Unit { value }
}
/// Wraps the given reference, assuming it is already normalized.
#[inline]
pub fn from_ref_unchecked(value: &T) -> &Self {
unsafe { &*(value as *const T as *const Self) }
}
/// Retrieves the underlying value.
#[inline]
pub fn into_inner(self) -> T {
self.value
}
/// Retrieves the underlying value.
/// Deprecated: use [`Unit::into_inner`] instead.
#[deprecated(note = "use `.into_inner()` instead")]
#[inline]
pub fn unwrap(self) -> T {
self.value
}
/// Returns a mutable reference to the underlying value. This is `_unchecked` because modifying
/// the underlying value in such a way that it no longer has unit length may lead to unexpected
/// results.
#[inline]
pub fn as_mut_unchecked(&mut self) -> &mut T {
&mut self.value
}
}
impl<T> AsRef<T> for Unit<T> {
#[inline]
fn as_ref(&self) -> &T {
&self.value
}
}
/*
/*
*
* Conversions.
*
*/
impl<T: NormedSpace> SubsetOf<T> for Unit<T>
where T::RealField: RelativeEq
{
#[inline]
fn to_superset(&self) -> T {
self.clone().into_inner()
}
#[inline]
fn is_in_subset(value: &T) -> bool {
relative_eq!(value.norm_squared(), crate::one())
}
#[inline]
fn from_superset_unchecked(value: &T) -> Self {
Unit::new_normalize(value.clone()) // We still need to re-normalize because the condition is inexact.
}
}
// impl<T: RelativeEq> RelativeEq for Unit<T> {
// type Epsilon = T::Epsilon;
//
// #[inline]
// fn default_epsilon() -> Self::Epsilon {
// T::default_epsilon()
// }
//
// #[inline]
// fn default_max_relative() -> Self::Epsilon {
// T::default_max_relative()
// }
//
// #[inline]
// fn default_max_ulps() -> u32 {
// T::default_max_ulps()
// }
//
// #[inline]
// fn relative_eq(&self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon) -> bool {
// self.value.relative_eq(&other.value, epsilon, max_relative)
// }
//
// #[inline]
// fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
// self.value.ulps_eq(&other.value, epsilon, max_ulps)
// }
// }
*/
// TODO:re-enable this impl when specialization is possible.
// Currently, it is disabled so that we can have a nice output for the `UnitQuaternion` display.
/*
impl<T: fmt::Display> fmt::Display for Unit<T> {
// XXX: will not always work correctly due to rounding errors.
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.value.fmt(f)
}
}
*/
impl<T> Deref for Unit<T> {
type Target = T;
#[inline]
fn deref(&self) -> &T {
unsafe { &*(self as *const Self as *const T) }
}
}
// NOTE: we can't use a generic implementation for `Unit<T>` because
// num_complex::Complex does not implement `From[Complex<...>...]` (and can't
// because of the orphan rules).
impl<T: Scalar + simba::simd::PrimitiveSimdValue, R: Dim, C: Dim>
From<[Unit<OMatrix<T::Element, R, C>>; 2]> for Unit<OMatrix<T, R, C>>
where
T: From<[<T as simba::simd::SimdValue>::Element; 2]>,
T::Element: Scalar,
DefaultAllocator: Allocator<T, R, C> + Allocator<T::Element, R, C>,
{
#[inline]
fn from(arr: [Unit<OMatrix<T::Element, R, C>>; 2]) -> Self {
Self::new_unchecked(OMatrix::from([
arr[0].clone().into_inner(),
arr[1].clone().into_inner(),
]))
}
}
impl<T: Scalar + simba::simd::PrimitiveSimdValue, R: Dim, C: Dim>
From<[Unit<OMatrix<T::Element, R, C>>; 4]> for Unit<OMatrix<T, R, C>>
where
T: From<[<T as simba::simd::SimdValue>::Element; 4]>,
T::Element: Scalar,
DefaultAllocator: Allocator<T, R, C> + Allocator<T::Element, R, C>,
{
#[inline]
fn from(arr: [Unit<OMatrix<T::Element, R, C>>; 4]) -> Self {
Self::new_unchecked(OMatrix::from([
arr[0].clone().into_inner(),
arr[1].clone().into_inner(),
arr[2].clone().into_inner(),
arr[3].clone().into_inner(),
]))
}
}
impl<T: Scalar + simba::simd::PrimitiveSimdValue, R: Dim, C: Dim>
From<[Unit<OMatrix<T::Element, R, C>>; 8]> for Unit<OMatrix<T, R, C>>
where
T: From<[<T as simba::simd::SimdValue>::Element; 8]>,
T::Element: Scalar,
DefaultAllocator: Allocator<T, R, C> + Allocator<T::Element, R, C>,
{
#[inline]
fn from(arr: [Unit<OMatrix<T::Element, R, C>>; 8]) -> Self {
Self::new_unchecked(OMatrix::from([
arr[0].clone().into_inner(),
arr[1].clone().into_inner(),
arr[2].clone().into_inner(),
arr[3].clone().into_inner(),
arr[4].clone().into_inner(),
arr[5].clone().into_inner(),
arr[6].clone().into_inner(),
arr[7].clone().into_inner(),
]))
}
}
impl<T: Scalar + simba::simd::PrimitiveSimdValue, R: Dim, C: Dim>
From<[Unit<OMatrix<T::Element, R, C>>; 16]> for Unit<OMatrix<T, R, C>>
where
T: From<[<T as simba::simd::SimdValue>::Element; 16]>,
T::Element: Scalar,
DefaultAllocator: Allocator<T, R, C> + Allocator<T::Element, R, C>,
{
#[inline]
fn from(arr: [Unit<OMatrix<T::Element, R, C>>; 16]) -> Self {
Self::new_unchecked(OMatrix::from([
arr[0].clone().into_inner(),
arr[1].clone().into_inner(),
arr[2].clone().into_inner(),
arr[3].clone().into_inner(),
arr[4].clone().into_inner(),
arr[5].clone().into_inner(),
arr[6].clone().into_inner(),
arr[7].clone().into_inner(),
arr[8].clone().into_inner(),
arr[9].clone().into_inner(),
arr[10].clone().into_inner(),
arr[11].clone().into_inner(),
arr[12].clone().into_inner(),
arr[13].clone().into_inner(),
arr[14].clone().into_inner(),
arr[15].clone().into_inner(),
]))
}
}