forked from M-Labs/nalgebra
125 lines
3.7 KiB
Rust
125 lines
3.7 KiB
Rust
// Matrix properties checks.
|
||
use approx::RelativeEq;
|
||
use num::{One, Zero};
|
||
|
||
use simba::scalar::{ClosedAdd, ClosedMul, ComplexField, RealField};
|
||
|
||
use crate::base::allocator::Allocator;
|
||
use crate::base::dimension::{Dim, DimMin};
|
||
use crate::base::storage::Storage;
|
||
use crate::base::{DefaultAllocator, Matrix, Scalar, SquareMatrix};
|
||
|
||
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||
/// Indicates if this is an empty matrix.
|
||
#[inline]
|
||
pub fn is_empty(&self) -> bool {
|
||
let (nrows, ncols) = self.shape();
|
||
nrows == 0 || ncols == 0
|
||
}
|
||
|
||
/// Indicates if this is a square matrix.
|
||
#[inline]
|
||
pub fn is_square(&self) -> bool {
|
||
let (nrows, ncols) = self.shape();
|
||
nrows == ncols
|
||
}
|
||
|
||
// FIXME: RelativeEq prevents us from using those methods on integer matrices…
|
||
/// Indicated if this is the identity matrix within a relative error of `eps`.
|
||
///
|
||
/// If the matrix is diagonal, this checks that diagonal elements (i.e. at coordinates `(i, i)`
|
||
/// for i from `0` to `min(R, C)`) are equal one; and that all other elements are zero.
|
||
#[inline]
|
||
pub fn is_identity(&self, eps: N::Epsilon) -> bool
|
||
where
|
||
N: Zero + One + RelativeEq,
|
||
N::Epsilon: Copy,
|
||
{
|
||
let (nrows, ncols) = self.shape();
|
||
let d;
|
||
|
||
if nrows > ncols {
|
||
d = ncols;
|
||
|
||
for i in d..nrows {
|
||
for j in 0..ncols {
|
||
if !relative_eq!(self[(i, j)], N::zero(), epsilon = eps) {
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
} else {
|
||
// nrows <= ncols
|
||
d = nrows;
|
||
|
||
for i in 0..nrows {
|
||
for j in d..ncols {
|
||
if !relative_eq!(self[(i, j)], N::zero(), epsilon = eps) {
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// Off-diagonal elements of the sub-square matrix.
|
||
for i in 1..d {
|
||
for j in 0..i {
|
||
// FIXME: use unsafe indexing.
|
||
if !relative_eq!(self[(i, j)], N::zero(), epsilon = eps)
|
||
|| !relative_eq!(self[(j, i)], N::zero(), epsilon = eps)
|
||
{
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Diagonal elements of the sub-square matrix.
|
||
for i in 0..d {
|
||
if !relative_eq!(self[(i, i)], N::one(), epsilon = eps) {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
true
|
||
}
|
||
}
|
||
|
||
impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
||
/// Checks that `Mᵀ × M = Id`.
|
||
///
|
||
/// In this definition `Id` is approximately equal to the identity matrix with a relative error
|
||
/// equal to `eps`.
|
||
#[inline]
|
||
pub fn is_orthogonal(&self, eps: N::Epsilon) -> bool
|
||
where
|
||
N: Zero + One + ClosedAdd + ClosedMul + RelativeEq,
|
||
S: Storage<N, R, C>,
|
||
N::Epsilon: Copy,
|
||
DefaultAllocator: Allocator<N, R, C> + Allocator<N, C, C>,
|
||
{
|
||
(self.ad_mul(self)).is_identity(eps)
|
||
}
|
||
}
|
||
|
||
impl<N: RealField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||
where
|
||
DefaultAllocator: Allocator<N, D, D>,
|
||
{
|
||
/// Checks that this matrix is orthogonal and has a determinant equal to 1.
|
||
#[inline]
|
||
pub fn is_special_orthogonal(&self, eps: N) -> bool
|
||
where
|
||
D: DimMin<D, Output = D>,
|
||
DefaultAllocator: Allocator<(usize, usize), D>,
|
||
{
|
||
self.is_square() && self.is_orthogonal(eps) && self.determinant() > N::zero()
|
||
}
|
||
|
||
/// Returns `true` if this matrix is invertible.
|
||
#[inline]
|
||
pub fn is_invertible(&self) -> bool {
|
||
// FIXME: improve this?
|
||
self.clone_owned().try_inverse().is_some()
|
||
}
|
||
}
|