forked from M-Labs/nalgebra
a2848e6e18
Version of rustc: 0.13.0-nightly (63c4f22f2 2014-11-05 22:31:44 +0000).
536 lines
16 KiB
Rust
536 lines
16 KiB
Rust
//! Quaternion definition.
|
||
|
||
#![allow(missing_docs)] // we allow missing to avoid having to document the dispatch trait.
|
||
|
||
use std::mem;
|
||
use std::num::{Zero, One, Bounded};
|
||
use std::num;
|
||
use std::rand::{Rand, Rng};
|
||
use std::slice::{Items, MutItems};
|
||
use structs::{Vec3, Pnt3, Rot3, Mat3, Vec3MulRhs, Pnt3MulRhs};
|
||
use traits::operations::{ApproxEq, Inv, POrd, POrdering, NotComparable, PartialLess,
|
||
PartialGreater, PartialEqual, Axpy, ScalarAdd, ScalarSub, ScalarMul,
|
||
ScalarDiv};
|
||
use traits::structure::{Cast, Indexable, Iterable, IterableMut, Dim, Shape};
|
||
use traits::geometry::{Norm, Cross, Rotation, Rotate, Transform};
|
||
|
||
/// A quaternion.
|
||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Zero, Show)]
|
||
pub struct Quat<N> {
|
||
/// The scalar component of the quaternion.
|
||
pub w: N,
|
||
/// The first vector component of the quaternion.
|
||
pub i: N,
|
||
/// The second vector component of the quaternion.
|
||
pub j: N,
|
||
/// The third vector component of the quaternion.
|
||
pub k: N
|
||
}
|
||
|
||
impl<N> Quat<N> {
|
||
/// Creates a new quaternion from its components.
|
||
#[inline]
|
||
pub fn new(w: N, i: N, j: N, k: N) -> Quat<N> {
|
||
Quat {
|
||
w: w,
|
||
i: i,
|
||
j: j,
|
||
k: k
|
||
}
|
||
}
|
||
|
||
/// The vector part `(i, j, k)` of this quaternion.
|
||
#[inline]
|
||
pub fn vector<'a>(&'a self) -> &'a Vec3<N> {
|
||
// FIXME: do this require a `repr(C)` ?
|
||
unsafe {
|
||
mem::transmute(&self.i)
|
||
}
|
||
}
|
||
|
||
/// The scalar part `w` of this quaternion.
|
||
#[inline]
|
||
pub fn scalar<'a>(&'a self) -> &'a N {
|
||
&self.w
|
||
}
|
||
}
|
||
|
||
impl<N: Neg<N>> Quat<N> {
|
||
/// Replaces this quaternion by its conjugate.
|
||
#[inline]
|
||
pub fn conjugate(&mut self) {
|
||
self.i = -self.i;
|
||
self.j = -self.j;
|
||
self.k = -self.k;
|
||
}
|
||
}
|
||
|
||
impl<N: Float + ApproxEq<N> + Clone> Inv for Quat<N> {
|
||
#[inline]
|
||
fn inv_cpy(m: &Quat<N>) -> Option<Quat<N>> {
|
||
let mut res = m.clone();
|
||
|
||
if res.inv() {
|
||
Some(res)
|
||
}
|
||
else {
|
||
None
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn inv(&mut self) -> bool {
|
||
let sqnorm = Norm::sqnorm(self);
|
||
|
||
if ApproxEq::approx_eq(&sqnorm, &Zero::zero()) {
|
||
false
|
||
}
|
||
else {
|
||
self.conjugate();
|
||
self.w = self.w / sqnorm;
|
||
self.i = self.i / sqnorm;
|
||
self.j = self.j / sqnorm;
|
||
self.k = self.k / sqnorm;
|
||
|
||
true
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<N: Float> Norm<N> for Quat<N> {
|
||
#[inline]
|
||
fn sqnorm(q: &Quat<N>) -> N {
|
||
q.w * q.w + q.i * q.i + q.j * q.j + q.k * q.k
|
||
}
|
||
|
||
#[inline]
|
||
fn normalize_cpy(v: &Quat<N>) -> Quat<N> {
|
||
let n = Norm::norm(v);
|
||
Quat::new(v.w / n, v.i / n, v.j / n, v.k / n)
|
||
}
|
||
|
||
#[inline]
|
||
fn normalize(&mut self) -> N {
|
||
let n = Norm::norm(self);
|
||
|
||
self.w = self.w / n;
|
||
self.i = self.i / n;
|
||
self.j = self.j / n;
|
||
self.k = self.k / n;
|
||
|
||
n
|
||
}
|
||
}
|
||
|
||
impl<N: Mul<N, N> + Sub<N, N> + Add<N, N>> QuatMulRhs<N, Quat<N>> for Quat<N> {
|
||
#[inline]
|
||
fn binop(left: &Quat<N>, right: &Quat<N>) -> Quat<N> {
|
||
Quat::new(
|
||
left.w * right.w - left.i * right.i - left.j * right.j - left.k * right.k,
|
||
left.w * right.i + left.i * right.w + left.j * right.k - left.k * right.j,
|
||
left.w * right.j - left.i * right.k + left.j * right.w + left.k * right.i,
|
||
left.w * right.k + left.i * right.j - left.j * right.i + left.k * right.w)
|
||
}
|
||
}
|
||
|
||
impl<N: ApproxEq<N> + Float + Clone> QuatDivRhs<N, Quat<N>> for Quat<N> {
|
||
#[inline]
|
||
fn binop(left: &Quat<N>, right: &Quat<N>) -> Quat<N> {
|
||
*left * Inv::inv_cpy(right).expect("Unable to invert the denominator.")
|
||
}
|
||
}
|
||
|
||
/// A unit quaternion that can represent a 3D rotation.
|
||
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Show)]
|
||
pub struct UnitQuat<N> {
|
||
q: Quat<N>
|
||
}
|
||
|
||
impl<N: FloatMath> UnitQuat<N> {
|
||
/// Creates a new unit quaternion from the axis-angle representation of a rotation.
|
||
#[inline]
|
||
pub fn new(axisangle: Vec3<N>) -> UnitQuat<N> {
|
||
let sqang = Norm::sqnorm(&axisangle);
|
||
|
||
if sqang.is_zero() {
|
||
One::one()
|
||
}
|
||
else {
|
||
let ang = sqang.sqrt();
|
||
let (s, c) = (ang / num::cast(2.0f64).unwrap()).sin_cos();
|
||
|
||
let s_ang = s / ang;
|
||
|
||
unsafe {
|
||
UnitQuat::new_with_unit_quat(
|
||
Quat::new(
|
||
c,
|
||
axisangle.x * s_ang,
|
||
axisangle.y * s_ang,
|
||
axisangle.z * s_ang)
|
||
)
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Creates a new unit quaternion from a quaternion.
|
||
///
|
||
/// The input quaternion will be normalized.
|
||
#[inline]
|
||
pub fn new_with_quat(q: Quat<N>) -> UnitQuat<N> {
|
||
let mut q = q;
|
||
let _ = q.normalize();
|
||
|
||
UnitQuat {
|
||
q: q
|
||
}
|
||
}
|
||
|
||
/// Creates a new unit quaternion from Euler angles.
|
||
///
|
||
/// The primitive rotations are applied in order: 1 roll − 2 pitch − 3 yaw.
|
||
#[inline]
|
||
pub fn new_with_euler_angles(roll: N, pitch: N, yaw: N) -> UnitQuat<N> {
|
||
let _0_5: N = num::cast(0.5f64).unwrap();
|
||
let (sr, cr) = (roll * _0_5).sin_cos();
|
||
let (sp, cp) = (pitch * _0_5).sin_cos();
|
||
let (sy, cy) = (yaw * _0_5).sin_cos();
|
||
|
||
unsafe {
|
||
UnitQuat::new_with_unit_quat(
|
||
Quat::new(
|
||
cr * cp * cy + sr * sp * sy,
|
||
sr * cp * cy - cr * sp * sy,
|
||
cr * sp * cy + sr * cp * sy,
|
||
cr * cp * sy - sr * sp * cy)
|
||
)
|
||
}
|
||
}
|
||
|
||
/// Builds a rotation matrix from this quaternion.
|
||
pub fn to_rot(&self) -> Rot3<N> {
|
||
let _2: N = num::cast(2.0f64).unwrap();
|
||
let ww = self.q.w * self.q.w;
|
||
let ii = self.q.i * self.q.i;
|
||
let jj = self.q.j * self.q.j;
|
||
let kk = self.q.k * self.q.k;
|
||
let ij = _2 * self.q.i * self.q.j;
|
||
let wk = _2 * self.q.w * self.q.k;
|
||
let wj = _2 * self.q.w * self.q.j;
|
||
let ik = _2 * self.q.i * self.q.k;
|
||
let jk = _2 * self.q.j * self.q.k;
|
||
let wi = _2 * self.q.w * self.q.i;
|
||
|
||
unsafe {
|
||
Rot3::new_with_mat(
|
||
Mat3::new(
|
||
ww + ii - jj - kk, ij - wk, wj + ik,
|
||
wk + ij, ww - ii + jj - kk, jk - wi,
|
||
ik - wj, wi + jk, ww - ii - jj + kk
|
||
)
|
||
)
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<N> UnitQuat<N> {
|
||
/// Creates a new unit quaternion from a quaternion.
|
||
///
|
||
/// This is unsafe because the input quaternion will not be normalized.
|
||
#[inline]
|
||
pub unsafe fn new_with_unit_quat(q: Quat<N>) -> UnitQuat<N> {
|
||
UnitQuat {
|
||
q: q
|
||
}
|
||
}
|
||
|
||
/// The `Quat` representation of this unit quaternion.
|
||
#[inline]
|
||
pub fn quat<'a>(&'a self) -> &'a Quat<N> {
|
||
&self.q
|
||
}
|
||
}
|
||
|
||
impl<N: Num + Clone> One for UnitQuat<N> {
|
||
#[inline]
|
||
fn one() -> UnitQuat<N> {
|
||
unsafe {
|
||
UnitQuat::new_with_unit_quat(Quat::new(One::one(), Zero::zero(), Zero::zero(), Zero::zero()))
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<N: Clone + Neg<N>> Inv for UnitQuat<N> {
|
||
#[inline]
|
||
fn inv_cpy(m: &UnitQuat<N>) -> Option<UnitQuat<N>> {
|
||
let mut cpy = m.clone();
|
||
|
||
cpy.inv();
|
||
Some(cpy)
|
||
}
|
||
|
||
#[inline]
|
||
fn inv(&mut self) -> bool {
|
||
self.q.conjugate();
|
||
|
||
true
|
||
}
|
||
}
|
||
|
||
impl<N: Clone + Rand + FloatMath> Rand for UnitQuat<N> {
|
||
#[inline]
|
||
fn rand<R: Rng>(rng: &mut R) -> UnitQuat<N> {
|
||
UnitQuat::new(rng.gen())
|
||
}
|
||
}
|
||
|
||
impl<N: ApproxEq<N>> ApproxEq<N> for UnitQuat<N> {
|
||
#[inline]
|
||
fn approx_epsilon(_: Option<UnitQuat<N>>) -> N {
|
||
ApproxEq::approx_epsilon(None::<N>)
|
||
}
|
||
|
||
#[inline]
|
||
fn approx_eq(a: &UnitQuat<N>, b: &UnitQuat<N>) -> bool {
|
||
ApproxEq::approx_eq(&a.q, &b.q)
|
||
}
|
||
|
||
#[inline]
|
||
fn approx_eq_eps(a: &UnitQuat<N>, b: &UnitQuat<N>, eps: &N) -> bool {
|
||
ApproxEq::approx_eq_eps(&a.q, &b.q, eps)
|
||
}
|
||
}
|
||
|
||
impl<N: Float + ApproxEq<N> + Clone> Div<UnitQuat<N>, UnitQuat<N>> for UnitQuat<N> {
|
||
#[inline]
|
||
fn div(&self, other: &UnitQuat<N>) -> UnitQuat<N> {
|
||
UnitQuat { q: self.q / other.q }
|
||
}
|
||
}
|
||
|
||
impl<N: Num + Clone> UnitQuatMulRhs<N, UnitQuat<N>> for UnitQuat<N> {
|
||
#[inline]
|
||
fn binop(left: &UnitQuat<N>, right: &UnitQuat<N>) -> UnitQuat<N> {
|
||
UnitQuat { q: left.q * right.q }
|
||
}
|
||
}
|
||
|
||
impl<N: Num + Clone> UnitQuatMulRhs<N, Vec3<N>> for Vec3<N> {
|
||
#[inline]
|
||
fn binop(left: &UnitQuat<N>, right: &Vec3<N>) -> Vec3<N> {
|
||
let _2: N = num::one::<N>() + num::one();
|
||
let mut t = Cross::cross(left.q.vector(), right);
|
||
t.x = t.x * _2;
|
||
t.y = t.y * _2;
|
||
t.z = t.z * _2;
|
||
|
||
Vec3::new(t.x * left.q.w, t.y * left.q.w, t.z * left.q.w) +
|
||
Cross::cross(left.q.vector(), &t) +
|
||
*right
|
||
}
|
||
}
|
||
|
||
impl<N: Num + Clone> UnitQuatMulRhs<N, Pnt3<N>> for Pnt3<N> {
|
||
#[inline]
|
||
fn binop(left: &UnitQuat<N>, right: &Pnt3<N>) -> Pnt3<N> {
|
||
::orig::<Pnt3<N>>() + *left * *right.as_vec()
|
||
}
|
||
}
|
||
|
||
impl<N: Num + Clone> Vec3MulRhs<N, Vec3<N>> for UnitQuat<N> {
|
||
#[inline]
|
||
fn binop(left: &Vec3<N>, right: &UnitQuat<N>) -> Vec3<N> {
|
||
let mut inv_quat = right.clone();
|
||
inv_quat.inv();
|
||
|
||
inv_quat * *left
|
||
}
|
||
}
|
||
|
||
impl<N: Num + Clone> Pnt3MulRhs<N, Pnt3<N>> for UnitQuat<N> {
|
||
#[inline]
|
||
fn binop(left: &Pnt3<N>, right: &UnitQuat<N>) -> Pnt3<N> {
|
||
::orig::<Pnt3<N>>() + *left.as_vec() * *right
|
||
}
|
||
}
|
||
|
||
impl<N: FloatMath + Clone> Rotation<Vec3<N>> for UnitQuat<N> {
|
||
#[inline]
|
||
fn rotation(&self) -> Vec3<N> {
|
||
let _2 = num::one::<N>() + num::one();
|
||
let mut v = self.q.vector().clone();
|
||
let ang = _2 * v.normalize().atan2(self.q.w);
|
||
|
||
if ang.is_zero() {
|
||
num::zero()
|
||
}
|
||
else {
|
||
Vec3::new(v.x * ang, v.y * ang, v.z * ang)
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn inv_rotation(&self) -> Vec3<N> {
|
||
-self.rotation()
|
||
}
|
||
|
||
#[inline]
|
||
fn append_rotation(&mut self, amount: &Vec3<N>) {
|
||
*self = Rotation::append_rotation_cpy(self, amount)
|
||
}
|
||
|
||
#[inline]
|
||
fn append_rotation_cpy(t: &UnitQuat<N>, amount: &Vec3<N>) -> UnitQuat<N> {
|
||
*t * UnitQuat::new(amount.clone())
|
||
}
|
||
|
||
#[inline]
|
||
fn prepend_rotation(&mut self, amount: &Vec3<N>) {
|
||
*self = Rotation::prepend_rotation_cpy(self, amount)
|
||
}
|
||
|
||
#[inline]
|
||
fn prepend_rotation_cpy(t: &UnitQuat<N>, amount: &Vec3<N>) -> UnitQuat<N> {
|
||
UnitQuat::new(amount.clone()) * *t
|
||
}
|
||
|
||
#[inline]
|
||
fn set_rotation(&mut self, v: Vec3<N>) {
|
||
*self = UnitQuat::new(v)
|
||
}
|
||
}
|
||
|
||
impl<N: Num + Clone> Rotate<Vec3<N>> for UnitQuat<N> {
|
||
#[inline]
|
||
fn rotate(&self, v: &Vec3<N>) -> Vec3<N> {
|
||
*self * *v
|
||
}
|
||
|
||
#[inline]
|
||
fn inv_rotate(&self, v: &Vec3<N>) -> Vec3<N> {
|
||
*v * *self
|
||
}
|
||
}
|
||
|
||
impl<N: Num + Clone> Rotate<Pnt3<N>> for UnitQuat<N> {
|
||
#[inline]
|
||
fn rotate(&self, p: &Pnt3<N>) -> Pnt3<N> {
|
||
*self * *p
|
||
}
|
||
|
||
#[inline]
|
||
fn inv_rotate(&self, p: &Pnt3<N>) -> Pnt3<N> {
|
||
*p * *self
|
||
}
|
||
}
|
||
|
||
impl<N: Num + Clone> Transform<Vec3<N>> for UnitQuat<N> {
|
||
#[inline]
|
||
fn transform(&self, v: &Vec3<N>) -> Vec3<N> {
|
||
*self * *v
|
||
}
|
||
|
||
#[inline]
|
||
fn inv_transform(&self, v: &Vec3<N>) -> Vec3<N> {
|
||
*v * *self
|
||
}
|
||
}
|
||
|
||
impl<N: Num + Clone> Transform<Pnt3<N>> for UnitQuat<N> {
|
||
#[inline]
|
||
fn transform(&self, p: &Pnt3<N>) -> Pnt3<N> {
|
||
*self * *p
|
||
}
|
||
|
||
#[inline]
|
||
fn inv_transform(&self, p: &Pnt3<N>) -> Pnt3<N> {
|
||
*p * *self
|
||
}
|
||
}
|
||
|
||
double_dispatch_binop_decl_trait!(Quat, QuatMulRhs)
|
||
double_dispatch_binop_decl_trait!(Quat, QuatDivRhs)
|
||
double_dispatch_binop_decl_trait!(Quat, QuatAddRhs)
|
||
double_dispatch_binop_decl_trait!(Quat, QuatSubRhs)
|
||
double_dispatch_cast_decl_trait!(Quat, QuatCast)
|
||
mul_redispatch_impl!(Quat, QuatMulRhs)
|
||
div_redispatch_impl!(Quat, QuatDivRhs)
|
||
add_redispatch_impl!(Quat, QuatAddRhs)
|
||
sub_redispatch_impl!(Quat, QuatSubRhs)
|
||
cast_redispatch_impl!(Quat, QuatCast)
|
||
ord_impl!(Quat, w, i, j, k)
|
||
vec_axis_impl!(Quat, w, i, j, k)
|
||
vec_cast_impl!(Quat, QuatCast, w, i, j, k)
|
||
as_slice_impl!(Quat, 4)
|
||
index_impl!(Quat)
|
||
indexable_impl!(Quat, 4)
|
||
at_fast_impl!(Quat, 4)
|
||
new_repeat_impl!(Quat, val, w, i, j, k)
|
||
dim_impl!(Quat, 3)
|
||
container_impl!(Quat)
|
||
add_impl!(Quat, QuatAddRhs, w, i, j, k)
|
||
sub_impl!(Quat, QuatSubRhs, w, i, j, k)
|
||
neg_impl!(Quat, w, i, j, k)
|
||
scalar_ops_impl!(Quat, w, i, j, k)
|
||
vec_mul_scalar_impl!(Quat, f64, QuatMulRhs, w, i, j, k)
|
||
vec_mul_scalar_impl!(Quat, f32, QuatMulRhs, w, i, j, k)
|
||
vec_mul_scalar_impl!(Quat, u64, QuatMulRhs, w, i, j, k)
|
||
vec_mul_scalar_impl!(Quat, u32, QuatMulRhs, w, i, j, k)
|
||
vec_mul_scalar_impl!(Quat, u16, QuatMulRhs, w, i, j, k)
|
||
vec_mul_scalar_impl!(Quat, u8, QuatMulRhs, w, i, j, k)
|
||
vec_mul_scalar_impl!(Quat, i64, QuatMulRhs, w, i, j, k)
|
||
vec_mul_scalar_impl!(Quat, i32, QuatMulRhs, w, i, j, k)
|
||
vec_mul_scalar_impl!(Quat, i16, QuatMulRhs, w, i, j, k)
|
||
vec_mul_scalar_impl!(Quat, i8, QuatMulRhs, w, i, j, k)
|
||
vec_mul_scalar_impl!(Quat, uint, QuatMulRhs, w, i, j, k)
|
||
vec_mul_scalar_impl!(Quat, int, QuatMulRhs, w, i, j, k)
|
||
vec_div_scalar_impl!(Quat, f64, QuatDivRhs, w, i, j, k)
|
||
vec_div_scalar_impl!(Quat, f32, QuatDivRhs, w, i, j, k)
|
||
vec_div_scalar_impl!(Quat, u64, QuatDivRhs, w, i, j, k)
|
||
vec_div_scalar_impl!(Quat, u32, QuatDivRhs, w, i, j, k)
|
||
vec_div_scalar_impl!(Quat, u16, QuatDivRhs, w, i, j, k)
|
||
vec_div_scalar_impl!(Quat, u8, QuatDivRhs, w, i, j, k)
|
||
vec_div_scalar_impl!(Quat, i64, QuatDivRhs, w, i, j, k)
|
||
vec_div_scalar_impl!(Quat, i32, QuatDivRhs, w, i, j, k)
|
||
vec_div_scalar_impl!(Quat, i16, QuatDivRhs, w, i, j, k)
|
||
vec_div_scalar_impl!(Quat, i8, QuatDivRhs, w, i, j, k)
|
||
vec_div_scalar_impl!(Quat, uint, QuatDivRhs, w, i, j, k)
|
||
vec_div_scalar_impl!(Quat, int, QuatDivRhs, w, i, j, k)
|
||
vec_add_scalar_impl!(Quat, f64, QuatAddRhs, w, i, j, k)
|
||
vec_add_scalar_impl!(Quat, f32, QuatAddRhs, w, i, j, k)
|
||
vec_add_scalar_impl!(Quat, u64, QuatAddRhs, w, i, j, k)
|
||
vec_add_scalar_impl!(Quat, u32, QuatAddRhs, w, i, j, k)
|
||
vec_add_scalar_impl!(Quat, u16, QuatAddRhs, w, i, j, k)
|
||
vec_add_scalar_impl!(Quat, u8, QuatAddRhs, w, i, j, k)
|
||
vec_add_scalar_impl!(Quat, i64, QuatAddRhs, w, i, j, k)
|
||
vec_add_scalar_impl!(Quat, i32, QuatAddRhs, w, i, j, k)
|
||
vec_add_scalar_impl!(Quat, i16, QuatAddRhs, w, i, j, k)
|
||
vec_add_scalar_impl!(Quat, i8, QuatAddRhs, w, i, j, k)
|
||
vec_add_scalar_impl!(Quat, uint, QuatAddRhs, w, i, j, k)
|
||
vec_add_scalar_impl!(Quat, int, QuatAddRhs, w, i, j, k)
|
||
vec_sub_scalar_impl!(Quat, f64, QuatSubRhs, w, i, j, k)
|
||
vec_sub_scalar_impl!(Quat, f32, QuatSubRhs, w, i, j, k)
|
||
vec_sub_scalar_impl!(Quat, u64, QuatSubRhs, w, i, j, k)
|
||
vec_sub_scalar_impl!(Quat, u32, QuatSubRhs, w, i, j, k)
|
||
vec_sub_scalar_impl!(Quat, u16, QuatSubRhs, w, i, j, k)
|
||
vec_sub_scalar_impl!(Quat, u8, QuatSubRhs, w, i, j, k)
|
||
vec_sub_scalar_impl!(Quat, i64, QuatSubRhs, w, i, j, k)
|
||
vec_sub_scalar_impl!(Quat, i32, QuatSubRhs, w, i, j, k)
|
||
vec_sub_scalar_impl!(Quat, i16, QuatSubRhs, w, i, j, k)
|
||
vec_sub_scalar_impl!(Quat, i8, QuatSubRhs, w, i, j, k)
|
||
vec_sub_scalar_impl!(Quat, uint, QuatSubRhs, w, i, j, k)
|
||
vec_sub_scalar_impl!(Quat, int, QuatSubRhs, w, i, j, k)
|
||
approx_eq_impl!(Quat, w, i, j, k)
|
||
from_iterator_impl!(Quat, iterator, iterator, iterator, iterator)
|
||
bounded_impl!(Quat, w, i, j, k)
|
||
axpy_impl!(Quat, w, i, j, k)
|
||
iterable_impl!(Quat, 4)
|
||
iterable_mut_impl!(Quat, 4)
|
||
|
||
double_dispatch_binop_decl_trait!(UnitQuat, UnitQuatMulRhs)
|
||
mul_redispatch_impl!(UnitQuat, UnitQuatMulRhs)
|
||
dim_impl!(UnitQuat, 3)
|
||
as_slice_impl!(UnitQuat, 4)
|
||
index_impl!(UnitQuat)
|
||
indexable_impl!(UnitQuat, 5)
|