forked from M-Labs/nalgebra
838 lines
17 KiB
Rust
838 lines
17 KiB
Rust
extern crate nalgebra as na;
|
|
extern crate rand;
|
|
|
|
use rand::random;
|
|
use na::{Rot2, Rot3, Iso2, Iso3, Sim2, Sim3, Vec3, Mat1, Mat2, Mat3, Mat4, Mat5, Mat6, DMat, DVec,
|
|
Row, Col, Diag, Transpose, RowSlice, ColSlice, Shape};
|
|
|
|
macro_rules! test_inv_mat_impl(
|
|
($t: ty) => (
|
|
for _ in 0usize .. 10000 {
|
|
let randmat : $t = random();
|
|
|
|
match na::inv(&randmat) {
|
|
None => { },
|
|
Some(i) => {
|
|
assert!(na::approx_eq(&(i * randmat), &na::one()))
|
|
}
|
|
}
|
|
}
|
|
);
|
|
);
|
|
|
|
macro_rules! test_transpose_mat_impl(
|
|
($t: ty) => (
|
|
for _ in 0usize .. 10000 {
|
|
let randmat : $t = random();
|
|
|
|
assert!(na::transpose(&na::transpose(&randmat)) == randmat);
|
|
}
|
|
);
|
|
);
|
|
|
|
macro_rules! test_qr_impl(
|
|
($t: ty) => (
|
|
for _ in 0usize .. 10000 {
|
|
let randmat : $t = random();
|
|
|
|
let (q, r) = na::qr(&randmat);
|
|
let recomp = q * r;
|
|
|
|
assert!(na::approx_eq(&randmat, &recomp));
|
|
}
|
|
);
|
|
);
|
|
|
|
macro_rules! test_cholesky_impl(
|
|
($t: ty) => (
|
|
for _ in 0usize .. 10000 {
|
|
|
|
// construct symmetric positive definite matrix
|
|
let mut randmat : $t = random();
|
|
let mut diagmat : $t = Diag::from_diag(&na::diag(&randmat));
|
|
|
|
diagmat = na::abs(&diagmat) + 1.0;
|
|
randmat = randmat * diagmat * na::transpose(&randmat);
|
|
|
|
let result = na::cholesky(&randmat);
|
|
|
|
assert!(result.is_ok());
|
|
|
|
let v = result.unwrap();
|
|
let recomp = v * na::transpose(&v);
|
|
assert!(na::approx_eq(&randmat, &recomp));
|
|
}
|
|
);
|
|
);
|
|
|
|
macro_rules! test_hessenberg_impl(
|
|
($t: ty) => (
|
|
for _ in 0usize .. 10000 {
|
|
|
|
let randmat : $t = random();
|
|
|
|
let (q, h) = na::hessenberg(&randmat);
|
|
let recomp = q * h * na::transpose(&q);
|
|
|
|
let (rows, cols) = h.shape();
|
|
|
|
// Check if `h` has zero entries below the first subdiagonal
|
|
if cols > 2 {
|
|
for j in 0..(cols-2) {
|
|
for i in (j+2)..rows {
|
|
assert!(na::approx_eq(&h[(i,j)], &0.0f64));
|
|
}
|
|
}
|
|
}
|
|
|
|
assert!(na::approx_eq(&randmat, &recomp));
|
|
}
|
|
);
|
|
);
|
|
|
|
macro_rules! test_eigen_qr_impl(
|
|
($t: ty) => {
|
|
for _ in 0usize .. 10000 {
|
|
let randmat : $t = random();
|
|
// Make it symetric so that we can recompose the matrix to test at the end.
|
|
let randmat = na::transpose(&randmat) * randmat;
|
|
let (eigenvectors, eigenvalues) = na::eigen_qr(&randmat, &1e-13, 100);
|
|
|
|
let diag: $t = Diag::from_diag(&eigenvalues);
|
|
let recomp = eigenvectors * diag * na::transpose(&eigenvectors);
|
|
println!("eigenvalues: {:?}", eigenvalues);
|
|
println!(" mat: {:?}", randmat);
|
|
println!("recomp: {:?}", recomp);
|
|
|
|
assert!(na::approx_eq_eps(&randmat, &recomp, &1.0e-2));
|
|
}
|
|
|
|
for _ in 0usize .. 10000 {
|
|
let randmat : $t = random();
|
|
// Take only diagonal part
|
|
let randmat: $t = Diag::from_diag(&randmat.diag());
|
|
let (eigenvectors, eigenvalues) = na::eigen_qr(&randmat, &1e-13, 100);
|
|
|
|
let diag: $t = Diag::from_diag(&eigenvalues);
|
|
let recomp = eigenvectors * diag * na::transpose(&eigenvectors);
|
|
println!("eigenvalues: {:?}", eigenvalues);
|
|
println!(" mat: {:?}", randmat);
|
|
println!("recomp: {:?}", recomp);
|
|
|
|
assert!(na::approx_eq_eps(&randmat, &recomp, &1.0e-2));
|
|
}
|
|
}
|
|
);
|
|
|
|
#[test]
|
|
fn test_transpose_mat1() {
|
|
test_transpose_mat_impl!(Mat1<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_transpose_mat2() {
|
|
test_transpose_mat_impl!(Mat2<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_transpose_mat3() {
|
|
test_transpose_mat_impl!(Mat3<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_transpose_mat4() {
|
|
test_transpose_mat_impl!(Mat4<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_transpose_mat5() {
|
|
test_transpose_mat_impl!(Mat5<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_transpose_mat6() {
|
|
test_transpose_mat_impl!(Mat6<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_inv_mat1() {
|
|
test_inv_mat_impl!(Mat1<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_inv_mat2() {
|
|
test_inv_mat_impl!(Mat2<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_inv_mat3() {
|
|
test_inv_mat_impl!(Mat3<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_inv_mat4() {
|
|
test_inv_mat_impl!(Mat4<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_inv_mat5() {
|
|
test_inv_mat_impl!(Mat5<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_inv_mat6() {
|
|
test_inv_mat_impl!(Mat6<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_inv_rot2() {
|
|
test_inv_mat_impl!(Rot2<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_inv_rot3() {
|
|
test_inv_mat_impl!(Rot3<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_inv_iso2() {
|
|
test_inv_mat_impl!(Iso2<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_inv_iso3() {
|
|
test_inv_mat_impl!(Iso3<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_inv_sim2() {
|
|
test_inv_mat_impl!(Sim2<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_inv_sim3() {
|
|
test_inv_mat_impl!(Sim3<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_index_mat2() {
|
|
let mat: Mat2<f64> = random();
|
|
|
|
assert!(mat[(0, 1)] == na::transpose(&mat)[(1, 0)]);
|
|
}
|
|
|
|
|
|
#[test]
|
|
fn test_mean_dmat() {
|
|
let mat = DMat::from_row_vec(
|
|
3,
|
|
3,
|
|
&[
|
|
1.0f64, 2.0, 3.0,
|
|
4.0f64, 5.0, 6.0,
|
|
7.0f64, 8.0, 9.0,
|
|
]
|
|
);
|
|
|
|
assert!(na::approx_eq(&na::mean(&mat), &DVec::from_slice(3, &[4.0f64, 5.0, 6.0])));
|
|
}
|
|
|
|
#[test]
|
|
fn test_cov_dmat() {
|
|
let mat = DMat::from_row_vec(
|
|
5,
|
|
3,
|
|
&[
|
|
4.0f64, 2.0, 0.60,
|
|
4.2f64, 2.1, 0.59,
|
|
3.9f64, 2.0, 0.58,
|
|
4.3f64, 2.1, 0.62,
|
|
4.1f64, 2.2, 0.63
|
|
]
|
|
);
|
|
|
|
let expected = DMat::from_row_vec(
|
|
3,
|
|
3,
|
|
&[
|
|
0.025f64, 0.0075, 0.00175,
|
|
0.0075f64, 0.007, 0.00135,
|
|
0.00175f64, 0.00135, 0.00043
|
|
]
|
|
);
|
|
|
|
assert!(na::approx_eq(&na::cov(&mat), &expected));
|
|
}
|
|
|
|
#[test]
|
|
fn test_transpose_dmat() {
|
|
let mat = DMat::from_row_vec(
|
|
8,
|
|
4,
|
|
&[
|
|
1u32,2, 3, 4,
|
|
5, 6, 7, 8,
|
|
9, 10, 11, 12,
|
|
13, 14, 15, 16,
|
|
17, 18, 19, 20,
|
|
21, 22, 23, 24,
|
|
25, 26, 27, 28,
|
|
29, 30, 31, 32
|
|
]
|
|
);
|
|
|
|
assert!(na::transpose(&na::transpose(&mat)) == mat);
|
|
}
|
|
|
|
#[test]
|
|
fn test_row_dmat() {
|
|
let mat = DMat::from_row_vec(
|
|
8,
|
|
4,
|
|
&[
|
|
1u32,2, 3, 4,
|
|
5, 6, 7, 8,
|
|
9, 10, 11, 12,
|
|
13, 14, 15, 16,
|
|
17, 18, 19, 20,
|
|
21, 22, 23, 24,
|
|
25, 26, 27, 28,
|
|
29, 30, 31, 32
|
|
]
|
|
);
|
|
|
|
assert_eq!(&DVec::from_slice(4, &[1u32, 2, 3, 4]), &mat.row(0));
|
|
assert_eq!(&DVec::from_slice(4, &[5u32, 6, 7, 8]), &mat.row(1));
|
|
assert_eq!(&DVec::from_slice(4, &[9u32, 10, 11, 12]), &mat.row(2));
|
|
assert_eq!(&DVec::from_slice(4, &[13u32, 14, 15, 16]), &mat.row(3));
|
|
assert_eq!(&DVec::from_slice(4, &[17u32, 18, 19, 20]), &mat.row(4));
|
|
assert_eq!(&DVec::from_slice(4, &[21u32, 22, 23, 24]), &mat.row(5));
|
|
assert_eq!(&DVec::from_slice(4, &[25u32, 26, 27, 28]), &mat.row(6));
|
|
assert_eq!(&DVec::from_slice(4, &[29u32, 30, 31, 32]), &mat.row(7));
|
|
}
|
|
|
|
#[test]
|
|
fn test_row_slice_dmat() {
|
|
let mat = DMat::from_row_vec(
|
|
5,
|
|
4,
|
|
&[
|
|
1u32,2, 3, 4,
|
|
5, 6, 7, 8,
|
|
9, 10, 11, 12,
|
|
13, 14, 15, 16,
|
|
17, 18, 19, 20,
|
|
]
|
|
);
|
|
|
|
assert_eq!(&DVec::from_slice(4, &[1u32, 2, 3, 4]), &mat.row_slice(0, 0, 4));
|
|
assert_eq!(&DVec::from_slice(2, &[1u32, 2]), &mat.row_slice(0, 0, 2));
|
|
assert_eq!(&DVec::from_slice(2, &[10u32, 11]), &mat.row_slice(2, 1, 3));
|
|
assert_eq!(&DVec::from_slice(2, &[19u32, 20]), &mat.row_slice(4, 2, 4));
|
|
}
|
|
|
|
#[test]
|
|
fn test_col_dmat() {
|
|
let mat = DMat::from_row_vec(
|
|
8,
|
|
4,
|
|
&[
|
|
1u32,2, 3, 4,
|
|
5, 6, 7, 8,
|
|
9, 10, 11, 12,
|
|
13, 14, 15, 16,
|
|
17, 18, 19, 20,
|
|
21, 22, 23, 24,
|
|
25, 26, 27, 28,
|
|
29, 30, 31, 32
|
|
]
|
|
);
|
|
|
|
assert_eq!(&DVec::from_slice(8, &[1u32, 5, 9, 13, 17, 21, 25, 29]), &mat.col(0));
|
|
assert_eq!(&DVec::from_slice(8, &[2u32, 6, 10, 14, 18, 22, 26, 30]), &mat.col(1));
|
|
assert_eq!(&DVec::from_slice(8, &[3u32, 7, 11, 15, 19, 23, 27, 31]), &mat.col(2));
|
|
assert_eq!(&DVec::from_slice(8, &[4u32, 8, 12, 16, 20, 24, 28, 32]), &mat.col(3));
|
|
}
|
|
|
|
#[test]
|
|
fn test_col_slice_dmat() {
|
|
let mat = DMat::from_row_vec(
|
|
8,
|
|
4,
|
|
&[
|
|
1u32,2, 3, 4,
|
|
5, 6, 7, 8,
|
|
9, 10, 11, 12,
|
|
13, 14, 15, 16,
|
|
17, 18, 19, 20,
|
|
21, 22, 23, 24,
|
|
25, 26, 27, 28,
|
|
29, 30, 31, 32
|
|
]
|
|
);
|
|
|
|
assert_eq!(&DVec::from_slice(8, &[1u32, 5, 9, 13, 17, 21, 25, 29]), &mat.col_slice(0, 0, 8));
|
|
assert_eq!(&DVec::from_slice(3, &[1u32, 5, 9]), &mat.col_slice(0, 0, 3));
|
|
assert_eq!(&DVec::from_slice(5, &[11u32, 15, 19, 23, 27]), &mat.col_slice(2, 2, 7));
|
|
assert_eq!(&DVec::from_slice(2, &[28u32, 32]), &mat.col_slice(3, 6, 8));
|
|
}
|
|
|
|
#[test]
|
|
fn test_dmat_from_vec() {
|
|
let mat1 = DMat::from_row_vec(
|
|
8,
|
|
4,
|
|
&[
|
|
1i32, 2, 3, 4,
|
|
5, 6, 7, 8,
|
|
9, 10, 11, 12,
|
|
13, 14, 15, 16,
|
|
17, 18, 19, 20,
|
|
21, 22, 23, 24,
|
|
25, 26, 27, 28,
|
|
29, 30, 31, 32
|
|
]
|
|
);
|
|
|
|
let mat2 = DMat::from_col_vec(
|
|
8,
|
|
4,
|
|
&[
|
|
1i32, 5, 9, 13, 17, 21, 25, 29,
|
|
2i32, 6, 10, 14, 18, 22, 26, 30,
|
|
3i32, 7, 11, 15, 19, 23, 27, 31,
|
|
4i32, 8, 12, 16, 20, 24, 28, 32
|
|
]
|
|
);
|
|
|
|
println!("mat1: {:?}, mat2: {:?}", mat1, mat2);
|
|
|
|
assert!(mat1 == mat2);
|
|
}
|
|
|
|
#[test]
|
|
fn test_dmat_addition() {
|
|
let mat1 = DMat::from_row_vec(
|
|
2,
|
|
2,
|
|
&[
|
|
1.0, 2.0,
|
|
3.0, 4.0
|
|
]
|
|
);
|
|
|
|
let mat2 = DMat::from_row_vec(
|
|
2,
|
|
2,
|
|
&[
|
|
10.0, 20.0,
|
|
30.0, 40.0
|
|
]
|
|
);
|
|
|
|
let res = DMat::from_row_vec(
|
|
2,
|
|
2,
|
|
&[
|
|
11.0, 22.0,
|
|
33.0, 44.0
|
|
]
|
|
);
|
|
|
|
assert!((mat1 + mat2) == res);
|
|
}
|
|
|
|
#[test]
|
|
fn test_dmat_multiplication() {
|
|
let mat1 = DMat::from_row_vec(
|
|
2,
|
|
2,
|
|
&[
|
|
1.0, 2.0,
|
|
3.0, 4.0
|
|
]
|
|
);
|
|
|
|
let mat2 = DMat::from_row_vec(
|
|
2,
|
|
2,
|
|
&[
|
|
10.0, 20.0,
|
|
30.0, 40.0
|
|
]
|
|
);
|
|
|
|
let res = DMat::from_row_vec(
|
|
2,
|
|
2,
|
|
&[
|
|
70.0, 100.0,
|
|
150.0, 220.0
|
|
]
|
|
);
|
|
|
|
assert!((mat1 * mat2) == res);
|
|
}
|
|
|
|
// Tests multiplication of rectangular (non-square) matrices.
|
|
#[test]
|
|
fn test_dmat_multiplication_rect() {
|
|
let mat1 = DMat::from_row_vec(
|
|
1,
|
|
2,
|
|
&[
|
|
1.0, 2.0,
|
|
]
|
|
);
|
|
|
|
let mat2 = DMat::from_row_vec(
|
|
2,
|
|
3,
|
|
&[
|
|
3.0, 4.0, 5.0,
|
|
6.0, 7.0, 8.0,
|
|
]
|
|
);
|
|
|
|
let res = DMat::from_row_vec(
|
|
1,
|
|
3,
|
|
&[
|
|
15.0, 18.0, 21.0,
|
|
]
|
|
);
|
|
|
|
assert!((mat1.clone() * mat2.clone()) == res);
|
|
assert!((&mat1 * mat2.clone()) == res);
|
|
assert!((mat1.clone() * &mat2) == res);
|
|
assert!((&mat1 * &mat2) == res);
|
|
}
|
|
|
|
#[test]
|
|
fn test_dmat_subtraction() {
|
|
let mat1 = DMat::from_row_vec(
|
|
2,
|
|
2,
|
|
&[
|
|
1.0, 2.0,
|
|
3.0, 4.0
|
|
]
|
|
);
|
|
|
|
let mat2 = DMat::from_row_vec(
|
|
2,
|
|
2,
|
|
&[
|
|
10.0, 20.0,
|
|
30.0, 40.0
|
|
]
|
|
);
|
|
|
|
let res = DMat::from_row_vec(
|
|
2,
|
|
2,
|
|
&[
|
|
-09.0, -18.0,
|
|
-27.0, -36.0
|
|
]
|
|
);
|
|
|
|
assert!((mat1 - mat2) == res);
|
|
}
|
|
|
|
#[test]
|
|
fn test_dmat_col() {
|
|
let mat = DMat::from_row_vec(
|
|
3,
|
|
3,
|
|
&[
|
|
1.0, 2.0, 3.0,
|
|
4.0, 5.0, 6.0,
|
|
7.0, 8.0, 9.0,
|
|
]
|
|
);
|
|
|
|
assert!(mat.col(1) == DVec::from_slice(3, &[2.0, 5.0, 8.0]));
|
|
}
|
|
|
|
#[test]
|
|
fn test_dmat_set_col() {
|
|
let mut mat = DMat::from_row_vec(
|
|
3,
|
|
3,
|
|
&[
|
|
1.0, 2.0, 3.0,
|
|
4.0, 5.0, 6.0,
|
|
7.0, 8.0, 9.0,
|
|
]
|
|
);
|
|
|
|
mat.set_col(1, DVec::from_slice(3, &[12.0, 15.0, 18.0]));
|
|
|
|
let expected = DMat::from_row_vec(
|
|
3,
|
|
3,
|
|
&[
|
|
1.0, 12.0, 3.0,
|
|
4.0, 15.0, 6.0,
|
|
7.0, 18.0, 9.0,
|
|
]
|
|
);
|
|
|
|
assert!(mat == expected);
|
|
}
|
|
|
|
#[test]
|
|
fn test_dmat_row() {
|
|
let mat = DMat::from_row_vec(
|
|
3,
|
|
3,
|
|
&[
|
|
1.0, 2.0, 3.0,
|
|
4.0, 5.0, 6.0,
|
|
7.0, 8.0, 9.0,
|
|
]
|
|
);
|
|
|
|
assert!(mat.row(1) == DVec::from_slice(3, &[4.0, 5.0, 6.0]));
|
|
}
|
|
|
|
#[test]
|
|
fn test_dmat_set_row() {
|
|
let mut mat = DMat::from_row_vec(
|
|
3,
|
|
3,
|
|
&[
|
|
1.0, 2.0, 3.0,
|
|
4.0, 5.0, 6.0,
|
|
7.0, 8.0, 9.0,
|
|
]
|
|
);
|
|
|
|
mat.set_row(1, DVec::from_slice(3, &[14.0, 15.0, 16.0]));
|
|
|
|
let expected = DMat::from_row_vec(
|
|
3,
|
|
3,
|
|
&[
|
|
1.0, 2.0, 3.0,
|
|
14.0, 15.0, 16.0,
|
|
7.0, 8.0, 9.0,
|
|
]
|
|
);
|
|
|
|
assert!(mat == expected);
|
|
}
|
|
|
|
/* FIXME: review qr decomposition to make it work with DMat.
|
|
#[test]
|
|
fn test_qr() {
|
|
for _ in 0usize .. 10 {
|
|
let dim1: usize = random();
|
|
let dim2: usize = random();
|
|
let rows = min(40, max(dim1, dim2));
|
|
let cols = min(40, min(dim1, dim2));
|
|
let randmat: DMat<f64> = DMat::new_random(rows, cols);
|
|
let (q, r) = na::qr(&randmat);
|
|
let recomp = q * r;
|
|
|
|
assert!(na::approx_eq(&randmat, &recomp));
|
|
}
|
|
}
|
|
*/
|
|
|
|
#[test]
|
|
fn test_qr_mat1() {
|
|
test_qr_impl!(Mat1<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_qr_mat2() {
|
|
test_qr_impl!(Mat2<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_qr_mat3() {
|
|
test_qr_impl!(Mat3<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_qr_mat4() {
|
|
test_qr_impl!(Mat4<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_qr_mat5() {
|
|
test_qr_impl!(Mat5<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_qr_mat6() {
|
|
test_qr_impl!(Mat6<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_eigen_qr_mat1() {
|
|
test_eigen_qr_impl!(Mat1<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_eigen_qr_mat2() {
|
|
test_eigen_qr_impl!(Mat2<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_eigen_qr_mat3() {
|
|
test_eigen_qr_impl!(Mat3<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_eigen_qr_mat4() {
|
|
test_eigen_qr_impl!(Mat4<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_eigen_qr_mat5() {
|
|
test_eigen_qr_impl!(Mat5<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_eigen_qr_mat6() {
|
|
test_eigen_qr_impl!(Mat6<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_from_fn() {
|
|
let actual: DMat<usize> = DMat::from_fn(3, 4, |i, j| 10 * i + j);
|
|
let expected: DMat<usize> = DMat::from_row_vec(3, 4,
|
|
&[ 0_0, 0_1, 0_2, 0_3,
|
|
1_0, 1_1, 1_2, 1_3,
|
|
2_0, 2_1, 2_2, 2_3 ]);
|
|
|
|
assert_eq!(actual, expected);
|
|
}
|
|
|
|
#[test]
|
|
fn test_row_3() {
|
|
let mat = Mat3::new(0.0f32, 1.0, 2.0,
|
|
3.0, 4.0, 5.0,
|
|
6.0, 7.0, 8.0);
|
|
let second_row = mat.row(1);
|
|
let second_col = mat.col(1);
|
|
|
|
assert!(second_row == Vec3::new(3.0, 4.0, 5.0));
|
|
assert!(second_col == Vec3::new(1.0, 4.0, 7.0));
|
|
}
|
|
|
|
#[test]
|
|
fn test_cholesky_const() {
|
|
|
|
let a : Mat3<f64> = Mat3::<f64>::new(1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 1.0, 2.0, 3.0);
|
|
let g : Mat3<f64> = Mat3::<f64>::new(1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0);
|
|
|
|
let result = na::cholesky(&a);
|
|
|
|
assert!(result.is_ok());
|
|
|
|
let v = result.unwrap();
|
|
assert!(na::approx_eq(&v, &g));
|
|
|
|
let recomp = v * na::transpose(&v);
|
|
assert!(na::approx_eq(&recomp, &a));
|
|
}
|
|
|
|
#[test]
|
|
fn test_cholesky_not_spd() {
|
|
|
|
let a : Mat3<f64> = Mat3::<f64>::new(1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 1.0, 1.0, 1.0);
|
|
|
|
let result = na::cholesky(&a);
|
|
|
|
assert!(result.is_err());
|
|
}
|
|
|
|
#[test]
|
|
fn test_cholesky_not_symmetric() {
|
|
|
|
let a : Mat2<f64> = Mat2::<f64>::new(1.0, 1.0, -1.0, 1.0);
|
|
|
|
let result = na::cholesky(&a);
|
|
|
|
assert!(result.is_err());
|
|
}
|
|
|
|
#[test]
|
|
fn test_cholesky_mat1() {
|
|
test_cholesky_impl!(Mat1<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_cholesky_mat2() {
|
|
test_cholesky_impl!(Mat2<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_cholesky_mat3() {
|
|
test_cholesky_impl!(Mat3<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_cholesky_mat4() {
|
|
test_cholesky_impl!(Mat4<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_cholesky_mat5() {
|
|
test_cholesky_impl!(Mat5<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_cholesky_mat6() {
|
|
test_cholesky_impl!(Mat6<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_hessenberg_mat1() {
|
|
test_hessenberg_impl!(Mat1<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_hessenberg_mat2() {
|
|
test_hessenberg_impl!(Mat2<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_hessenberg_mat3() {
|
|
test_hessenberg_impl!(Mat3<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_hessenberg_mat4() {
|
|
test_hessenberg_impl!(Mat4<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_hessenberg_mat5() {
|
|
test_hessenberg_impl!(Mat5<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_hessenberg_mat6() {
|
|
test_hessenberg_impl!(Mat6<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_transpose_square_mat() {
|
|
let col_major_mat = &[0, 1, 2, 3,
|
|
0, 1, 2, 3,
|
|
0, 1, 2, 3,
|
|
0, 1, 2, 3];
|
|
let num_rows = 4;
|
|
let num_cols = 4;
|
|
let mut mat = DMat::from_col_vec(num_rows, num_cols, col_major_mat);
|
|
mat.transpose_mut();
|
|
for i in 0..num_rows {
|
|
assert_eq!(&[0, 1, 2, 3], &mat.row_slice(i, 0, num_cols)[..]);
|
|
}
|
|
}
|