forked from M-Labs/nalgebra
96 lines
3.6 KiB
Rust
96 lines
3.6 KiB
Rust
use na::{DefaultAllocator, Real, Unit, Rotation3, Point3};
|
||
|
||
use traits::{Dimension, Number, Alloc};
|
||
use aliases::{Mat, Vec, TVec3, TMat4};
|
||
|
||
/// The identity matrix.
|
||
pub fn identity<N: Number, D: Dimension>() -> Mat<N, D, D>
|
||
where DefaultAllocator: Alloc<N, D, D> {
|
||
Mat::<N, D, D>::identity()
|
||
}
|
||
|
||
/// Build a look at view matrix based on the right handedness.
|
||
///
|
||
/// # Parameters
|
||
/// * `eye` − Position of the camera
|
||
/// * `center` − Position where the camera is looking at
|
||
/// * `u` − Normalized up vector, how the camera is oriented. Typically `(0, 1, 0)`
|
||
pub fn look_at<N: Real>(eye: &TVec3<N>, center: &TVec3<N>, up: &TVec3<N>) -> TMat4<N> {
|
||
look_at_rh(eye, center, up)
|
||
}
|
||
|
||
/// Build a left handed look at view matrix.
|
||
///
|
||
/// # Parameters
|
||
/// * `eye` − Position of the camera
|
||
/// * `center` − Position where the camera is looking at
|
||
/// * `u` − Normalized up vector, how the camera is oriented. Typically `(0, 1, 0)`
|
||
pub fn look_at_lh<N: Real>(eye: &TVec3<N>, center: &TVec3<N>, up: &TVec3<N>) -> TMat4<N> {
|
||
Mat::look_at_lh(&Point3::from_coordinates(*eye), &Point3::from_coordinates(*center), up)
|
||
}
|
||
|
||
/// Build a right handed look at view matrix.
|
||
///
|
||
/// # Parameters
|
||
/// * `eye` − Position of the camera
|
||
/// * `center` − Position where the camera is looking at
|
||
/// * `u` − Normalized up vector, how the camera is oriented. Typically `(0, 1, 0)`
|
||
pub fn look_at_rh<N: Real>(eye: &TVec3<N>, center: &TVec3<N>, up: &TVec3<N>) -> TMat4<N> {
|
||
Mat::look_at_rh(&Point3::from_coordinates(*eye), &Point3::from_coordinates(*center), up)
|
||
}
|
||
|
||
/// Builds a rotation 4 * 4 matrix created from an axis vector and an angle and right-multiply it to `m`.
|
||
///
|
||
/// # Parameters
|
||
/// * m − Input matrix multiplied by this rotation matrix.
|
||
/// * angle − Rotation angle expressed in radians.
|
||
/// * axis − Rotation axis, recommended to be normalized.
|
||
pub fn rotate<N: Real>(m: &TMat4<N>, angle: N, axis: &TVec3<N>) -> TMat4<N> {
|
||
m * Rotation3::from_axis_angle(&Unit::new_normalize(*axis), angle).to_homogeneous()
|
||
}
|
||
|
||
/// Builds a rotation 4 * 4 matrix around the X axis and right-multiply it to `m`.
|
||
///
|
||
/// # Parameters
|
||
/// * m − Input matrix multiplied by this rotation matrix.
|
||
/// * angle − Rotation angle expressed in radians.
|
||
pub fn rotate_x<N: Real>(m: &TMat4<N>, angle: N) -> TMat4<N> {
|
||
rotate(m, angle, &Vec::x())
|
||
}
|
||
|
||
/// Builds a rotation 4 * 4 matrix around the Y axis and right-multiply it to `m`.
|
||
///
|
||
/// # Parameters
|
||
/// * m − Input matrix multiplied by this rotation matrix.
|
||
/// * angle − Rotation angle expressed in radians.
|
||
pub fn rotate_y<N: Real>(m: &TMat4<N>, angle: N) -> TMat4<N> {
|
||
rotate(m, angle, &Vec::y())
|
||
}
|
||
|
||
/// Builds a rotation 4 * 4 matrix around the Z axis and right-multiply it to `m`.
|
||
///
|
||
/// # Parameters
|
||
/// * m − Input matrix multiplied by this rotation matrix.
|
||
/// * angle − Rotation angle expressed in radians.
|
||
pub fn rotate_z<N: Real>(m: &TMat4<N>, angle: N) -> TMat4<N> {
|
||
rotate(m, angle, &Vec::z())
|
||
}
|
||
|
||
/// Builds a scale 4 * 4 matrix created from 3 scalars and right-multiply it to `m`.
|
||
///
|
||
/// # Parameters
|
||
/// * m − Input matrix multiplied by this scale matrix.
|
||
/// * v − Ratio of scaling for each axis.
|
||
pub fn scale<N: Number>(m: &TMat4<N>, v: &TVec3<N>) -> TMat4<N> {
|
||
m.prepend_nonuniform_scaling(v)
|
||
}
|
||
|
||
/// Builds a translation 4 * 4 matrix created from a vector of 3 components and right-multiply it to `m`.
|
||
///
|
||
/// # Parameters
|
||
/// * m − Input matrix multiplied by this translation matrix.
|
||
/// * v − Coordinates of a translation vector.
|
||
pub fn translate<N: Number>(m: &TMat4<N>, v: &TVec3<N>) -> TMat4<N> {
|
||
m.prepend_translation(v)
|
||
}
|