forked from M-Labs/nalgebra
307 lines
12 KiB
Rust
307 lines
12 KiB
Rust
use crate::csr::CsrMatrix;
|
|
use crate::csc::CscMatrix;
|
|
|
|
use std::ops::{Add, Div, DivAssign, Mul, MulAssign, Sub, Neg};
|
|
use crate::ops::serial::{spadd_csr_prealloc, spadd_csc_prealloc, spadd_pattern, spmm_pattern,
|
|
spmm_csr_prealloc, spmm_csc_prealloc, spmm_csc_dense, spmm_csr_dense};
|
|
use nalgebra::{ClosedAdd, ClosedMul, ClosedSub, ClosedDiv, Scalar, Matrix, Dim,
|
|
DMatrixSlice, DMatrix, Dynamic};
|
|
use num_traits::{Zero, One};
|
|
use std::sync::Arc;
|
|
use crate::ops::{Op};
|
|
use nalgebra::base::storage::Storage;
|
|
|
|
/// Helper macro for implementing binary operators for different matrix types
|
|
/// See below for usage.
|
|
macro_rules! impl_bin_op {
|
|
($trait:ident, $method:ident,
|
|
<$($life:lifetime),* $(,)? $($scalar_type:ident $(: $bounds:path)?)?>($a:ident : $a_type:ty, $b:ident : $b_type:ty) -> $ret:ty $body:block)
|
|
=>
|
|
{
|
|
impl<$($life,)* $($scalar_type)?> $trait<$b_type> for $a_type
|
|
where
|
|
// Note: The Neg bound is currently required because we delegate e.g.
|
|
// Sub to SpAdd with negative coefficients. This is not well-defined for
|
|
// unsigned data types.
|
|
$($scalar_type: $($bounds + )? Scalar + ClosedAdd + ClosedSub + ClosedMul + Zero + One + Neg<Output=T>)?
|
|
{
|
|
type Output = $ret;
|
|
fn $method(self, $b: $b_type) -> Self::Output {
|
|
let $a = self;
|
|
$body
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Implements a +/- b for all combinations of reference and owned matrices, for
|
|
/// CsrMatrix or CscMatrix.
|
|
macro_rules! impl_sp_plus_minus {
|
|
// We first match on some special-case syntax, and forward to the actual implementation
|
|
($matrix_type:ident, $spadd_fn:ident, +) => {
|
|
impl_sp_plus_minus!(Add, add, $matrix_type, $spadd_fn, +, T::one());
|
|
};
|
|
($matrix_type:ident, $spadd_fn:ident, -) => {
|
|
impl_sp_plus_minus!(Sub, sub, $matrix_type, $spadd_fn, -, -T::one());
|
|
};
|
|
($trait:ident, $method:ident, $matrix_type:ident, $spadd_fn:ident, $sign:tt, $factor:expr) => {
|
|
impl_bin_op!($trait, $method,
|
|
<'a, T>(a: &'a $matrix_type<T>, b: &'a $matrix_type<T>) -> $matrix_type<T> {
|
|
// If both matrices have the same pattern, then we can immediately re-use it
|
|
let pattern = if Arc::ptr_eq(a.pattern(), b.pattern()) {
|
|
Arc::clone(a.pattern())
|
|
} else {
|
|
Arc::new(spadd_pattern(a.pattern(), b.pattern()))
|
|
};
|
|
let values = vec![T::zero(); pattern.nnz()];
|
|
// We are giving data that is valid by definition, so it is safe to unwrap below
|
|
let mut result = $matrix_type::try_from_pattern_and_values(pattern, values)
|
|
.unwrap();
|
|
$spadd_fn(T::zero(), &mut result, T::one(), Op::NoOp(&a)).unwrap();
|
|
$spadd_fn(T::one(), &mut result, $factor * T::one(), Op::NoOp(&b)).unwrap();
|
|
result
|
|
});
|
|
|
|
impl_bin_op!($trait, $method,
|
|
<'a, T>(a: $matrix_type<T>, b: &'a $matrix_type<T>) -> $matrix_type<T> {
|
|
let mut a = a;
|
|
if Arc::ptr_eq(a.pattern(), b.pattern()) {
|
|
$spadd_fn(T::one(), &mut a, $factor * T::one(), Op::NoOp(b)).unwrap();
|
|
a
|
|
} else {
|
|
&a $sign b
|
|
}
|
|
});
|
|
|
|
impl_bin_op!($trait, $method,
|
|
<'a, T>(a: &'a $matrix_type<T>, b: $matrix_type<T>) -> $matrix_type<T> {
|
|
let mut b = b;
|
|
if Arc::ptr_eq(a.pattern(), b.pattern()) {
|
|
$spadd_fn($factor * T::one(), &mut b, T::one(), Op::NoOp(a)).unwrap();
|
|
b
|
|
} else {
|
|
a $sign &b
|
|
}
|
|
});
|
|
impl_bin_op!($trait, $method, <T>(a: $matrix_type<T>, b: $matrix_type<T>) -> $matrix_type<T> {
|
|
a $sign &b
|
|
});
|
|
}
|
|
}
|
|
|
|
impl_sp_plus_minus!(CsrMatrix, spadd_csr_prealloc, +);
|
|
impl_sp_plus_minus!(CsrMatrix, spadd_csr_prealloc, -);
|
|
impl_sp_plus_minus!(CscMatrix, spadd_csc_prealloc, +);
|
|
impl_sp_plus_minus!(CscMatrix, spadd_csc_prealloc, -);
|
|
|
|
macro_rules! impl_mul {
|
|
($($args:tt)*) => {
|
|
impl_bin_op!(Mul, mul, $($args)*);
|
|
}
|
|
}
|
|
|
|
/// Implements a + b for all combinations of reference and owned matrices, for
|
|
/// CsrMatrix or CscMatrix.
|
|
macro_rules! impl_spmm {
|
|
($matrix_type:ident, $pattern_fn:expr, $spmm_fn:expr) => {
|
|
impl_mul!(<'a, T>(a: &'a $matrix_type<T>, b: &'a $matrix_type<T>) -> $matrix_type<T> {
|
|
let pattern = $pattern_fn(a.pattern(), b.pattern());
|
|
let values = vec![T::zero(); pattern.nnz()];
|
|
let mut result = $matrix_type::try_from_pattern_and_values(Arc::new(pattern), values)
|
|
.unwrap();
|
|
$spmm_fn(T::zero(),
|
|
&mut result,
|
|
T::one(),
|
|
Op::NoOp(a),
|
|
Op::NoOp(b))
|
|
.expect("Internal error: spmm failed (please debug).");
|
|
result
|
|
});
|
|
impl_mul!(<'a, T>(a: &'a $matrix_type<T>, b: $matrix_type<T>) -> $matrix_type<T> { a * &b});
|
|
impl_mul!(<'a, T>(a: $matrix_type<T>, b: &'a $matrix_type<T>) -> $matrix_type<T> { &a * b});
|
|
impl_mul!(<T>(a: $matrix_type<T>, b: $matrix_type<T>) -> $matrix_type<T> { &a * &b});
|
|
}
|
|
}
|
|
|
|
impl_spmm!(CsrMatrix, spmm_pattern, spmm_csr_prealloc);
|
|
// Need to switch order of operations for CSC pattern
|
|
impl_spmm!(CscMatrix, |a, b| spmm_pattern(b, a), spmm_csc_prealloc);
|
|
|
|
/// Implements Scalar * Matrix operations for *concrete* scalar types. The reason this is necessary
|
|
/// is that we are not able to implement Mul<Matrix<T>> for all T generically due to orphan rules.
|
|
macro_rules! impl_concrete_scalar_matrix_mul {
|
|
($matrix_type:ident, $($scalar_type:ty),*) => {
|
|
// For each concrete scalar type, forward the implementation of scalar * matrix
|
|
// to matrix * scalar, which we have already implemented through generics
|
|
$(
|
|
impl_mul!(<>(a: $scalar_type, b: $matrix_type<$scalar_type>)
|
|
-> $matrix_type<$scalar_type> { b * a });
|
|
impl_mul!(<'a>(a: $scalar_type, b: &'a $matrix_type<$scalar_type>)
|
|
-> $matrix_type<$scalar_type> { b * a });
|
|
impl_mul!(<'a>(a: &'a $scalar_type, b: $matrix_type<$scalar_type>)
|
|
-> $matrix_type<$scalar_type> { b * (*a) });
|
|
impl_mul!(<'a>(a: &'a $scalar_type, b: &'a $matrix_type<$scalar_type>)
|
|
-> $matrix_type<$scalar_type> { b * *a });
|
|
)*
|
|
}
|
|
}
|
|
|
|
/// Implements multiplication between matrix and scalar for various matrix types
|
|
macro_rules! impl_scalar_mul {
|
|
($matrix_type: ident) => {
|
|
impl_mul!(<'a, T>(a: &'a $matrix_type<T>, b: &'a T) -> $matrix_type<T> {
|
|
let values: Vec<_> = a.values()
|
|
.iter()
|
|
.map(|v_i| v_i.inlined_clone() * b.inlined_clone())
|
|
.collect();
|
|
$matrix_type::try_from_pattern_and_values(Arc::clone(a.pattern()), values).unwrap()
|
|
});
|
|
impl_mul!(<'a, T>(a: &'a $matrix_type<T>, b: T) -> $matrix_type<T> {
|
|
a * &b
|
|
});
|
|
impl_mul!(<'a, T>(a: $matrix_type<T>, b: &'a T) -> $matrix_type<T> {
|
|
let mut a = a;
|
|
for value in a.values_mut() {
|
|
*value = b.inlined_clone() * value.inlined_clone();
|
|
}
|
|
a
|
|
});
|
|
impl_mul!(<T>(a: $matrix_type<T>, b: T) -> $matrix_type<T> {
|
|
a * &b
|
|
});
|
|
impl_concrete_scalar_matrix_mul!(
|
|
$matrix_type,
|
|
i8, i16, i32, i64, isize, f32, f64);
|
|
|
|
impl<T> MulAssign<T> for $matrix_type<T>
|
|
where
|
|
T: Scalar + ClosedAdd + ClosedMul + Zero + One
|
|
{
|
|
fn mul_assign(&mut self, scalar: T) {
|
|
for val in self.values_mut() {
|
|
*val *= scalar.inlined_clone();
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a, T> MulAssign<&'a T> for $matrix_type<T>
|
|
where
|
|
T: Scalar + ClosedAdd + ClosedMul + Zero + One
|
|
{
|
|
fn mul_assign(&mut self, scalar: &'a T) {
|
|
for val in self.values_mut() {
|
|
*val *= scalar.inlined_clone();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl_scalar_mul!(CsrMatrix);
|
|
impl_scalar_mul!(CscMatrix);
|
|
|
|
macro_rules! impl_neg {
|
|
($matrix_type:ident) => {
|
|
impl<T> Neg for $matrix_type<T>
|
|
where
|
|
T: Scalar + Neg<Output=T>
|
|
{
|
|
type Output = $matrix_type<T>;
|
|
|
|
fn neg(mut self) -> Self::Output {
|
|
for v_i in self.values_mut() {
|
|
*v_i = -v_i.inlined_clone();
|
|
}
|
|
self
|
|
}
|
|
}
|
|
|
|
impl<'a, T> Neg for &'a $matrix_type<T>
|
|
where
|
|
T: Scalar + Neg<Output=T>
|
|
{
|
|
type Output = $matrix_type<T>;
|
|
|
|
fn neg(self) -> Self::Output {
|
|
// TODO: This is inefficient. Ideally we'd have a method that would let us
|
|
// obtain both the sparsity pattern and values from the matrix,
|
|
// and then modify the values before creating a new matrix from the pattern
|
|
// and negated values.
|
|
- self.clone()
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl_neg!(CsrMatrix);
|
|
impl_neg!(CscMatrix);
|
|
|
|
macro_rules! impl_div {
|
|
($matrix_type:ident) => {
|
|
impl_bin_op!(Div, div, <T: ClosedDiv>(matrix: $matrix_type<T>, scalar: T) -> $matrix_type<T> {
|
|
let mut matrix = matrix;
|
|
matrix /= scalar;
|
|
matrix
|
|
});
|
|
impl_bin_op!(Div, div, <'a, T: ClosedDiv>(matrix: $matrix_type<T>, scalar: &T) -> $matrix_type<T> {
|
|
matrix / scalar.inlined_clone()
|
|
});
|
|
impl_bin_op!(Div, div, <'a, T: ClosedDiv>(matrix: &'a $matrix_type<T>, scalar: T) -> $matrix_type<T> {
|
|
let new_values = matrix.values()
|
|
.iter()
|
|
.map(|v_i| v_i.inlined_clone() / scalar.inlined_clone())
|
|
.collect();
|
|
$matrix_type::try_from_pattern_and_values(Arc::clone(matrix.pattern()), new_values)
|
|
.unwrap()
|
|
});
|
|
impl_bin_op!(Div, div, <'a, T: ClosedDiv>(matrix: &'a $matrix_type<T>, scalar: &'a T) -> $matrix_type<T> {
|
|
matrix / scalar.inlined_clone()
|
|
});
|
|
|
|
impl<T> DivAssign<T> for $matrix_type<T>
|
|
where T : Scalar + ClosedAdd + ClosedMul + ClosedDiv + Zero + One
|
|
{
|
|
fn div_assign(&mut self, scalar: T) {
|
|
self.values_mut().iter_mut().for_each(|v_i| *v_i /= scalar.inlined_clone());
|
|
}
|
|
}
|
|
|
|
impl<'a, T> DivAssign<&'a T> for $matrix_type<T>
|
|
where T : Scalar + ClosedAdd + ClosedMul + ClosedDiv + Zero + One
|
|
{
|
|
fn div_assign(&mut self, scalar: &'a T) {
|
|
*self /= scalar.inlined_clone();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl_div!(CsrMatrix);
|
|
impl_div!(CscMatrix);
|
|
|
|
macro_rules! impl_spmm_cs_dense {
|
|
($matrix_type:ident, $spmm_fn:ident) => {
|
|
impl<'a, T, R, C, S> Mul<&'a Matrix<T, R, C, S>> for &'a $matrix_type<T>
|
|
where
|
|
&'a Matrix<T, R, C, S>: Into<DMatrixSlice<'a, T>>,
|
|
T: Scalar + ClosedMul + ClosedAdd + ClosedSub + ClosedDiv + Neg + Zero + One,
|
|
R: Dim,
|
|
C: Dim,
|
|
S: Storage<T, R, C>,
|
|
{
|
|
type Output = DMatrix<T>;
|
|
|
|
fn mul(self, rhs: &'a Matrix<T, R, C, S>) -> Self::Output {
|
|
let rhs = rhs.into();
|
|
let (_, ncols) = rhs.data.shape();
|
|
let nrows = Dynamic::new(self.nrows());
|
|
let mut result = Matrix::zeros_generic(nrows, ncols);
|
|
$spmm_fn(T::zero(), &mut result, T::one(), Op::NoOp(self), Op::NoOp(rhs));
|
|
result
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl_spmm_cs_dense!(CsrMatrix, spmm_csr_dense);
|
|
impl_spmm_cs_dense!(CscMatrix, spmm_csc_dense); |