forked from M-Labs/nalgebra
504 lines
14 KiB
Rust
504 lines
14 KiB
Rust
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
|
|
use num::One;
|
|
use std::cmp::Ordering;
|
|
use std::fmt;
|
|
use std::hash;
|
|
#[cfg(feature = "abomonation-serialize")]
|
|
use std::io::{Result as IOResult, Write};
|
|
use std::mem::MaybeUninit;
|
|
|
|
#[cfg(feature = "serde-serialize-no-std")]
|
|
use serde::{Deserialize, Deserializer, Serialize, Serializer};
|
|
|
|
#[cfg(feature = "abomonation-serialize")]
|
|
use abomonation::Abomonation;
|
|
|
|
use simba::simd::SimdPartialOrd;
|
|
|
|
use crate::allocator::InnerAllocator;
|
|
use crate::base::allocator::Allocator;
|
|
use crate::base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
|
|
use crate::base::iter::{MatrixIter, MatrixIterMut};
|
|
use crate::base::{Const, DefaultAllocator, OVector};
|
|
use crate::storage::Owned;
|
|
use crate::Scalar;
|
|
|
|
/// A point in an euclidean space.
|
|
///
|
|
/// The difference between a point and a vector is only semantic. See [the user guide](https://www.nalgebra.org/points_and_transformations/)
|
|
/// for details on the distinction. The most notable difference that vectors ignore translations.
|
|
/// In particular, an [`Isometry2`](crate::Isometry2) or [`Isometry3`](crate::Isometry3) will
|
|
/// transform points by applying a rotation and a translation on them. However, these isometries
|
|
/// will only apply rotations to vectors (when doing `isometry * vector`, the translation part of
|
|
/// the isometry is ignored).
|
|
///
|
|
/// # Construction
|
|
/// * [From individual components <span style="float:right;">`new`…</span>](#construction-from-individual-components)
|
|
/// * [Swizzling <span style="float:right;">`xx`, `yxz`…</span>](#swizzling)
|
|
/// * [Other construction methods <span style="float:right;">`origin`, `from_slice`, `from_homogeneous`…</span>](#other-construction-methods)
|
|
///
|
|
/// # Transformation
|
|
/// Transforming a point by an [Isometry](crate::Isometry), [rotation](crate::Rotation), etc. can be
|
|
/// achieved by multiplication, e.g., `isometry * point` or `rotation * point`. Some of these transformation
|
|
/// may have some other methods, e.g., `isometry.inverse_transform_point(&point)`. See the documentation
|
|
/// of said transformations for details.
|
|
#[repr(C)]
|
|
// TODO: figure out why #[derive(Clone, Debug)] doesn't work!
|
|
pub struct OPoint<T, D: DimName>
|
|
where
|
|
DefaultAllocator: InnerAllocator<T, D>,
|
|
{
|
|
/// The coordinates of this point, i.e., the shift from the origin.
|
|
pub coords: OVector<T, D>,
|
|
}
|
|
|
|
impl<T: hash::Hash, D: DimName> hash::Hash for OPoint<T, D>
|
|
where
|
|
DefaultAllocator: Allocator<T, D>,
|
|
{
|
|
fn hash<H: hash::Hasher>(&self, state: &mut H) {
|
|
self.coords.hash(state)
|
|
}
|
|
}
|
|
|
|
impl<T: Copy, D: DimName> Copy for OPoint<T, D>
|
|
where
|
|
DefaultAllocator: Allocator<T, D>,
|
|
OVector<T, D>: Copy,
|
|
{
|
|
}
|
|
|
|
impl<T: Clone, D: DimName> Clone for OPoint<T, D>
|
|
where
|
|
DefaultAllocator: Allocator<T, D>,
|
|
OVector<T, D>: Clone,
|
|
{
|
|
fn clone(&self) -> Self {
|
|
Self::from(self.coords.clone())
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "bytemuck")]
|
|
unsafe impl<T, D: DimName> bytemuck::Zeroable for OPoint<T, D>
|
|
where
|
|
OVector<T, D>: bytemuck::Zeroable,
|
|
DefaultAllocator: Allocator<T, D>,
|
|
{
|
|
}
|
|
|
|
#[cfg(feature = "bytemuck")]
|
|
unsafe impl<T, D: DimName> bytemuck::Pod for OPoint<T, D>
|
|
where
|
|
T: Copy,
|
|
OVector<T, D>: bytemuck::Pod,
|
|
DefaultAllocator: Allocator<T, D>,
|
|
{
|
|
}
|
|
|
|
#[cfg(feature = "serde-serialize-no-std")]
|
|
impl<T: Serialize, D: DimName> Serialize for OPoint<T, D>
|
|
where
|
|
DefaultAllocator: Allocator<T, D>,
|
|
<DefaultAllocator as Allocator<T, D>>::Buffer: Serialize,
|
|
{
|
|
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
|
where
|
|
S: Serializer,
|
|
{
|
|
self.coords.serialize(serializer)
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "serde-serialize-no-std")]
|
|
impl<'a, T: Deserialize<'a>, D: DimName> Deserialize<'a> for OPoint<T, D>
|
|
where
|
|
DefaultAllocator: Allocator<T, D>,
|
|
<DefaultAllocator as Allocator<T, D>>::Buffer: Deserialize<'a>,
|
|
{
|
|
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
|
|
where
|
|
Des: Deserializer<'a>,
|
|
{
|
|
let coords = OVector::<T, D>::deserialize(deserializer)?;
|
|
|
|
Ok(Self::from(coords))
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "abomonation-serialize")]
|
|
impl<T, D: DimName> Abomonation for OPoint<T, D>
|
|
where
|
|
OVector<T, D>: Abomonation,
|
|
DefaultAllocator: Allocator<T, D>,
|
|
{
|
|
unsafe fn entomb<W: Write>(&self, writer: &mut W) -> IOResult<()> {
|
|
self.coords.entomb(writer)
|
|
}
|
|
|
|
fn extent(&self) -> usize {
|
|
self.coords.extent()
|
|
}
|
|
|
|
unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
|
|
self.coords.exhume(bytes)
|
|
}
|
|
}
|
|
|
|
impl<T, D: DimName> OPoint<T, D>
|
|
where
|
|
DefaultAllocator: Allocator<T, D>,
|
|
{
|
|
/// Returns a point containing the result of `f` applied to each of its entries.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::{Point2, Point3};
|
|
/// let p = Point2::new(1.0, 2.0);
|
|
/// assert_eq!(p.map(|e| e * 10.0), Point2::new(10.0, 20.0));
|
|
///
|
|
/// // This works in any dimension.
|
|
/// let p = Point3::new(1.1, 2.1, 3.1);
|
|
/// assert_eq!(p.map(|e| e as u32), Point3::new(1, 2, 3));
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn map<T2, F: FnMut(T) -> T2>(&self, f: F) -> OPoint<T2, D>
|
|
where
|
|
T: Clone,
|
|
DefaultAllocator: Allocator<T2, D>,
|
|
{
|
|
self.coords.map(f).into()
|
|
}
|
|
|
|
/// Replaces each component of `self` by the result of a closure `f` applied on it.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::{Point2, Point3};
|
|
/// let mut p = Point2::new(1.0, 2.0);
|
|
/// p.apply(|e| e * 10.0);
|
|
/// assert_eq!(p, Point2::new(10.0, 20.0));
|
|
///
|
|
/// // This works in any dimension.
|
|
/// let mut p = Point3::new(1.0, 2.0, 3.0);
|
|
/// p.apply(|e| e * 10.0);
|
|
/// assert_eq!(p, Point3::new(10.0, 20.0, 30.0));
|
|
/// ```
|
|
#[inline]
|
|
pub fn apply<F: FnMut(T) -> T>(&mut self, f: F) {
|
|
self.coords.apply(f)
|
|
}
|
|
|
|
/// Converts this point into a vector in homogeneous coordinates, i.e., appends a `1` at the
|
|
/// end of it.
|
|
///
|
|
/// This is the same as `.into()`.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::{Point2, Point3, Vector3, Vector4};
|
|
/// let p = Point2::new(10.0, 20.0);
|
|
/// assert_eq!(p.to_homogeneous(), Vector3::new(10.0, 20.0, 1.0));
|
|
///
|
|
/// // This works in any dimension.
|
|
/// let p = Point3::new(10.0, 20.0, 30.0);
|
|
/// assert_eq!(p.to_homogeneous(), Vector4::new(10.0, 20.0, 30.0, 1.0));
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn to_homogeneous(&self) -> OVector<T, DimNameSum<D, U1>>
|
|
where
|
|
T: One + Clone,
|
|
D: DimNameAdd<U1>,
|
|
DefaultAllocator: Allocator<T, DimNameSum<D, U1>>,
|
|
{
|
|
let mut res = OVector::<_, DimNameSum<D, U1>>::new_uninitialized();
|
|
for i in 0..D::dim() {
|
|
unsafe {
|
|
*res.get_unchecked_mut(i) = MaybeUninit::new(self.coords[i].clone());
|
|
}
|
|
}
|
|
|
|
res[(D::dim(), 0)] = MaybeUninit::new(T::one());
|
|
|
|
unsafe { res.assume_init() }
|
|
}
|
|
|
|
pub fn into_homogeneous(self) -> OVector<T, DimNameSum<D, U1>>
|
|
where
|
|
T: One,
|
|
D: DimNameAdd<U1>,
|
|
DefaultAllocator: Allocator<T, DimNameSum<D, U1>>,
|
|
{
|
|
let mut res = OVector::<_, DimNameSum<D, U1>>::new_uninitialized();
|
|
|
|
// TODO: maybe we can move the whole array at once? Or use `into_iter`
|
|
// to avoid double-dropping.
|
|
for i in 0..D::dim() {
|
|
unsafe {
|
|
*res.get_unchecked_mut(i) = MaybeUninit::new(*self.coords.get_unchecked(i));
|
|
}
|
|
}
|
|
|
|
// Fix double drop
|
|
|
|
unsafe {
|
|
*res.get_unchecked_mut(D::dim()) = MaybeUninit::new(T::one());
|
|
res.assume_init()
|
|
}
|
|
}
|
|
|
|
/// Creates a new point with the given coordinates.
|
|
#[deprecated(note = "Use Point::from(vector) instead.")]
|
|
#[inline]
|
|
pub fn from_coordinates(coords: OVector<T, D>) -> Self {
|
|
Self { coords }
|
|
}
|
|
|
|
/// The dimension of this point.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::{Point2, Point3};
|
|
/// let p = Point2::new(1.0, 2.0);
|
|
/// assert_eq!(p.len(), 2);
|
|
///
|
|
/// // This works in any dimension.
|
|
/// let p = Point3::new(10.0, 20.0, 30.0);
|
|
/// assert_eq!(p.len(), 3);
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn len(&self) -> usize {
|
|
self.coords.len()
|
|
}
|
|
|
|
/// Returns true if the point contains no elements.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::{Point2, Point3};
|
|
/// let p = Point2::new(1.0, 2.0);
|
|
/// assert!(!p.is_empty());
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn is_empty(&self) -> bool {
|
|
self.len() == 0
|
|
}
|
|
|
|
/// The stride of this point. This is the number of buffer element separating each component of
|
|
/// this point.
|
|
#[inline]
|
|
#[deprecated(note = "This methods is no longer significant and will always return 1.")]
|
|
pub fn stride(&self) -> usize {
|
|
self.coords.strides().0
|
|
}
|
|
|
|
/// Iterates through this point coordinates.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::Point3;
|
|
/// let p = Point3::new(1.0, 2.0, 3.0);
|
|
/// let mut it = p.iter().cloned();
|
|
///
|
|
/// assert_eq!(it.next(), Some(1.0));
|
|
/// assert_eq!(it.next(), Some(2.0));
|
|
/// assert_eq!(it.next(), Some(3.0));
|
|
/// assert_eq!(it.next(), None);
|
|
#[inline]
|
|
pub fn iter(&self) -> MatrixIter<T, D, Const<1>, Owned<T, D>> {
|
|
self.coords.iter()
|
|
}
|
|
|
|
/// Gets a reference to i-th element of this point without bound-checking.
|
|
#[inline]
|
|
#[must_use]
|
|
pub unsafe fn get_unchecked(&self, i: usize) -> &T {
|
|
self.coords.vget_unchecked(i)
|
|
}
|
|
|
|
/// Mutably iterates through this point coordinates.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::Point3;
|
|
/// let mut p = Point3::new(1.0, 2.0, 3.0);
|
|
///
|
|
/// for e in p.iter_mut() {
|
|
/// *e *= 10.0;
|
|
/// }
|
|
///
|
|
/// assert_eq!(p, Point3::new(10.0, 20.0, 30.0));
|
|
#[inline]
|
|
pub fn iter_mut(&mut self) -> MatrixIterMut<T, D, Const<1>, Owned<T, D>> {
|
|
self.coords.iter_mut()
|
|
}
|
|
|
|
/// Gets a mutable reference to i-th element of this point without bound-checking.
|
|
#[inline]
|
|
#[must_use]
|
|
pub unsafe fn get_unchecked_mut(&mut self, i: usize) -> &mut T {
|
|
self.coords.vget_unchecked_mut(i)
|
|
}
|
|
|
|
/// Swaps two entries without bound-checking.
|
|
#[inline]
|
|
pub unsafe fn swap_unchecked(&mut self, i1: usize, i2: usize) {
|
|
self.coords.swap_unchecked((i1, 0), (i2, 0))
|
|
}
|
|
}
|
|
|
|
impl<T: AbsDiffEq, D: DimName> AbsDiffEq for OPoint<T, D>
|
|
where
|
|
T::Epsilon: Copy,
|
|
DefaultAllocator: Allocator<T, D>,
|
|
{
|
|
type Epsilon = T::Epsilon;
|
|
|
|
#[inline]
|
|
fn default_epsilon() -> Self::Epsilon {
|
|
T::default_epsilon()
|
|
}
|
|
|
|
#[inline]
|
|
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
|
|
self.coords.abs_diff_eq(&other.coords, epsilon)
|
|
}
|
|
}
|
|
|
|
impl<T: RelativeEq, D: DimName> RelativeEq for OPoint<T, D>
|
|
where
|
|
T::Epsilon: Copy,
|
|
DefaultAllocator: Allocator<T, D>,
|
|
{
|
|
#[inline]
|
|
fn default_max_relative() -> Self::Epsilon {
|
|
T::default_max_relative()
|
|
}
|
|
|
|
#[inline]
|
|
fn relative_eq(
|
|
&self,
|
|
other: &Self,
|
|
epsilon: Self::Epsilon,
|
|
max_relative: Self::Epsilon,
|
|
) -> bool {
|
|
self.coords
|
|
.relative_eq(&other.coords, epsilon, max_relative)
|
|
}
|
|
}
|
|
|
|
impl<T: UlpsEq, D: DimName> UlpsEq for OPoint<T, D>
|
|
where
|
|
T::Epsilon: Copy,
|
|
DefaultAllocator: Allocator<T, D>,
|
|
{
|
|
#[inline]
|
|
fn default_max_ulps() -> u32 {
|
|
T::default_max_ulps()
|
|
}
|
|
|
|
#[inline]
|
|
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
|
|
self.coords.ulps_eq(&other.coords, epsilon, max_ulps)
|
|
}
|
|
}
|
|
|
|
impl<T: Eq, D: DimName> Eq for OPoint<T, D> where DefaultAllocator: Allocator<T, D> {}
|
|
|
|
impl<T: PartialEq, D: DimName> PartialEq for OPoint<T, D>
|
|
where
|
|
DefaultAllocator: Allocator<T, D>,
|
|
{
|
|
#[inline]
|
|
fn eq(&self, right: &Self) -> bool {
|
|
self.coords == right.coords
|
|
}
|
|
}
|
|
|
|
impl<T: PartialOrd, D: DimName> PartialOrd for OPoint<T, D>
|
|
where
|
|
DefaultAllocator: Allocator<T, D>,
|
|
{
|
|
#[inline]
|
|
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
|
self.coords.partial_cmp(&other.coords)
|
|
}
|
|
|
|
#[inline]
|
|
fn lt(&self, right: &Self) -> bool {
|
|
self.coords.lt(&right.coords)
|
|
}
|
|
|
|
#[inline]
|
|
fn le(&self, right: &Self) -> bool {
|
|
self.coords.le(&right.coords)
|
|
}
|
|
|
|
#[inline]
|
|
fn gt(&self, right: &Self) -> bool {
|
|
self.coords.gt(&right.coords)
|
|
}
|
|
|
|
#[inline]
|
|
fn ge(&self, right: &Self) -> bool {
|
|
self.coords.ge(&right.coords)
|
|
}
|
|
}
|
|
|
|
/*
|
|
* inf/sup
|
|
*/
|
|
impl<T: Scalar + SimdPartialOrd, D: DimName> OPoint<T, D>
|
|
where
|
|
DefaultAllocator: Allocator<T, D>,
|
|
{
|
|
/// Computes the infimum (aka. componentwise min) of two points.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn inf(&self, other: &Self) -> OPoint<T, D> {
|
|
self.coords.inf(&other.coords).into()
|
|
}
|
|
|
|
/// Computes the supremum (aka. componentwise max) of two points.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn sup(&self, other: &Self) -> OPoint<T, D> {
|
|
self.coords.sup(&other.coords).into()
|
|
}
|
|
|
|
/// Computes the (infimum, supremum) of two points.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn inf_sup(&self, other: &Self) -> (OPoint<T, D>, OPoint<T, D>) {
|
|
let (inf, sup) = self.coords.inf_sup(&other.coords);
|
|
(inf.into(), sup.into())
|
|
}
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Display
|
|
*
|
|
*/
|
|
impl<T: fmt::Display, D: DimName> fmt::Display for OPoint<T, D>
|
|
where
|
|
DefaultAllocator: Allocator<T, D>,
|
|
{
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(f, "{{")?;
|
|
|
|
let mut it = self.coords.iter();
|
|
|
|
write!(f, "{}", *it.next().unwrap())?;
|
|
|
|
for comp in it {
|
|
write!(f, ", {}", *comp)?;
|
|
}
|
|
|
|
write!(f, "}}")
|
|
}
|
|
}
|