nalgebra/src/adaptors/rotmat.rs
2013-06-08 10:09:17 +00:00

174 lines
4.0 KiB
Rust

use std::num::{One, Zero};
use std::rand::{Rand, Rng, RngUtil};
use std::cmp::ApproxEq;
use traits::workarounds::rlmul::{RMul, LMul};
use traits::dim::Dim;
use traits::inv::Inv;
use traits::transpose::Transpose;
use traits::rotation::Rotation;
use traits::delta_transform::DeltaTransform;
use dim1::vec1::Vec1;
use dim2::mat2::Mat2;
use dim3::mat3::Mat3;
use dim3::vec3::{Vec3};
#[deriving(Eq, ToStr)]
pub struct Rotmat<M>
{
priv submat: M
}
impl<M: Copy> Rotmat<M>
{
fn submat(&self) -> M
{ self.submat }
}
pub fn rotmat2<T: Copy + Trigonometric + Neg<T>>(angle: T) -> Rotmat<Mat2<T>>
{
let coa = angle.cos();
let sia = angle.sin();
Rotmat
{ submat: Mat2::new(coa, -sia, sia, coa) }
}
pub fn rotmat3<T: Copy + Trigonometric + Neg<T> + One + Sub<T, T> + Add<T, T> +
Mul<T, T>>
(axis: &Vec3<T>, angle: T) -> Rotmat<Mat3<T>>
{
let _1 = One::one::<T>();
let ux = axis.x;
let uy = axis.y;
let uz = axis.z;
let sqx = ux * ux;
let sqy = uy * uy;
let sqz = uz * uz;
let cos = angle.cos();
let one_m_cos = _1 - cos;
let sin = angle.sin();
Rotmat {
submat: Mat3::new(
(sqx + (_1 - sqx) * cos),
(ux * uy * one_m_cos - uz * sin),
(ux * uz * one_m_cos + uy * sin),
(ux * uy * one_m_cos + uz * sin),
(sqy + (_1 - sqy) * cos),
(uy * uz * one_m_cos - ux * sin),
(ux * uz * one_m_cos - uy * sin),
(uy * uz * one_m_cos + ux * sin),
(sqz + (_1 - sqz) * cos))
}
}
impl<T: Div<T, T> + Trigonometric + Neg<T> + Mul<T, T> + Add<T, T> + Copy>
Rotation<Vec1<T>> for Rotmat<Mat2<T>>
{
fn rotation(&self) -> Vec1<T>
{ Vec1::new(-(self.submat.m12 / self.submat.m11).atan()) }
fn rotated(&self, rot: &Vec1<T>) -> Rotmat<Mat2<T>>
{ rotmat2(rot.x) * *self }
fn rotate(&mut self, rot: &Vec1<T>)
{ *self = self.rotated(rot) }
}
impl<T: Div<T, T> + Trigonometric + Neg<T> + Mul<T, T> + Add<T, T> + Copy +
One + Sub<T, T>>
Rotation<(Vec3<T>, T)> for Rotmat<Mat3<T>>
{
fn rotation(&self) -> (Vec3<T>, T)
{ fail!("Not yet implemented.") }
fn rotated(&self, &(axis, angle): &(Vec3<T>, T)) -> Rotmat<Mat3<T>>
{ rotmat3(&axis, angle) * *self }
fn rotate(&mut self, rot: &(Vec3<T>, T))
{ *self = self.rotated(rot) }
}
impl<T: Copy + Rand + Trigonometric + Neg<T>> Rand for Rotmat<Mat2<T>>
{
fn rand<R: Rng>(rng: &mut R) -> Rotmat<Mat2<T>>
{ rotmat2(rng.gen()) }
}
impl<T: Copy + Rand + Trigonometric + Neg<T> + One + Sub<T, T> + Add<T, T> +
Mul<T, T>>
Rand for Rotmat<Mat3<T>>
{
fn rand<R: Rng>(rng: &mut R) -> Rotmat<Mat3<T>>
{ rotmat3(&rng.gen(), rng.gen()) }
}
impl<M: Dim> Dim for Rotmat<M>
{
fn dim() -> uint
{ Dim::dim::<M>() }
}
impl<M: Copy + One + Zero> One for Rotmat<M>
{
fn one() -> Rotmat<M>
{ Rotmat { submat: One::one() } }
}
impl<M: Copy + Mul<M, M>> Mul<Rotmat<M>, Rotmat<M>> for Rotmat<M>
{
fn mul(&self, other: &Rotmat<M>) -> Rotmat<M>
{ Rotmat { submat: self.submat.mul(&other.submat) } }
}
impl<V, M: RMul<V>> RMul<V> for Rotmat<M>
{
fn rmul(&self, other: &V) -> V
{ self.submat.rmul(other) }
}
impl<V, M: LMul<V>> LMul<V> for Rotmat<M>
{
fn lmul(&self, other: &V) -> V
{ self.submat.lmul(other) }
}
impl<M: Copy> DeltaTransform<M> for Rotmat<M>
{
fn delta_transform(&self) -> M
{ self.submat }
}
impl<M: Copy + Transpose> Inv for Rotmat<M>
{
fn invert(&mut self)
{ self.transpose() }
fn inverse(&self) -> Rotmat<M>
{ self.transposed() }
}
impl<M: Copy + Transpose>
Transpose for Rotmat<M>
{
fn transposed(&self) -> Rotmat<M>
{ Rotmat { submat: self.submat.transposed() } }
fn transpose(&mut self)
{ self.submat.transpose() }
}
impl<T: ApproxEq<T>, M: ApproxEq<T>> ApproxEq<T> for Rotmat<M>
{
fn approx_epsilon() -> T
{ ApproxEq::approx_epsilon::<T, T>() }
fn approx_eq(&self, other: &Rotmat<M>) -> bool
{ self.submat.approx_eq(&other.submat) }
fn approx_eq_eps(&self, other: &Rotmat<M>, epsilon: &T) -> bool
{ self.submat.approx_eq_eps(&other.submat, epsilon) }
}