nalgebra/nalgebra-sparse/src/proptest.rs
Andreas Longva 7473d54d74 rustfmt
2021-01-26 10:11:24 +01:00

375 lines
14 KiB
Rust

//! Functionality for integrating `nalgebra-sparse` with `proptest`.
//!
//! **This module is only available if the `proptest-support` feature is enabled**.
//!
//! The strategies provided here are generally expected to be able to generate the entire range
//! of possible outputs given the constraints on dimensions and values. However, there are no
//! particular guarantees on the distribution of possible values.
// Contains some patched code from proptest that we can remove in the (hopefully near) future.
// See docs in file for more details.
mod proptest_patched;
use crate::coo::CooMatrix;
use crate::csc::CscMatrix;
use crate::csr::CsrMatrix;
use crate::pattern::SparsityPattern;
use nalgebra::proptest::DimRange;
use nalgebra::{Dim, Scalar};
use proptest::collection::{btree_set, hash_map, vec};
use proptest::prelude::*;
use proptest::sample::Index;
use std::cmp::min;
use std::iter::repeat;
fn dense_row_major_coord_strategy(
nrows: usize,
ncols: usize,
nnz: usize,
) -> impl Strategy<Value = Vec<(usize, usize)>> {
assert!(nnz <= nrows * ncols);
let mut booleans = vec![true; nnz];
booleans.append(&mut vec![false; (nrows * ncols) - nnz]);
// Make sure that exactly `nnz` of the booleans are true
// TODO: We cannot use the below code because of a bug in proptest, see
// https://github.com/AltSysrq/proptest/pull/217
// so for now we're using a patched version of the Shuffle adapter
// (see also docs in `proptest_patched`
// Just(booleans)
// // Need to shuffle to make sure they are randomly distributed
// .prop_shuffle()
proptest_patched::Shuffle(Just(booleans)).prop_map(move |booleans| {
booleans
.into_iter()
.enumerate()
.filter_map(|(index, is_entry)| {
if is_entry {
// Convert linear index to row/col pair
let i = index / ncols;
let j = index % ncols;
Some((i, j))
} else {
None
}
})
.collect::<Vec<_>>()
})
}
/// A strategy for generating `nnz` triplets.
///
/// This strategy should generally only be used when `nnz` is close to `nrows * ncols`.
fn dense_triplet_strategy<T>(
value_strategy: T,
nrows: usize,
ncols: usize,
nnz: usize,
) -> impl Strategy<Value = Vec<(usize, usize, T::Value)>>
where
T: Strategy + Clone + 'static,
T::Value: Scalar,
{
assert!(nnz <= nrows * ncols);
// Construct a number of booleans of which exactly `nnz` are true.
let booleans: Vec<_> = repeat(true)
.take(nnz)
.chain(repeat(false))
.take(nrows * ncols)
.collect();
Just(booleans)
// Shuffle the booleans so that they are randomly distributed
.prop_shuffle()
// Convert the booleans into a list of coordinate pairs
.prop_map(move |booleans| {
booleans
.into_iter()
.enumerate()
.filter_map(|(index, is_entry)| {
if is_entry {
// Convert linear index to row/col pair
let i = index / ncols;
let j = index % ncols;
Some((i, j))
} else {
None
}
})
.collect::<Vec<_>>()
})
// Assign values to each coordinate pair in order to generate a list of triplets
.prop_flat_map(move |coords| {
vec![value_strategy.clone(); coords.len()].prop_map(move |values| {
coords
.clone()
.into_iter()
.zip(values)
.map(|((i, j), v)| (i, j, v))
.collect::<Vec<_>>()
})
})
}
/// A strategy for generating `nnz` triplets.
///
/// This strategy should generally only be used when `nnz << nrows * ncols`. If `nnz` is too
/// close to `nrows * ncols` it may fail due to excessive rejected samples.
fn sparse_triplet_strategy<T>(
value_strategy: T,
nrows: usize,
ncols: usize,
nnz: usize,
) -> impl Strategy<Value = Vec<(usize, usize, T::Value)>>
where
T: Strategy + Clone + 'static,
T::Value: Scalar,
{
// Have to handle the zero case: proptest doesn't like empty ranges (i.e. 0 .. 0)
let row_index_strategy = if nrows > 0 { 0..nrows } else { 0..1 };
let col_index_strategy = if ncols > 0 { 0..ncols } else { 0..1 };
let coord_strategy = (row_index_strategy, col_index_strategy);
hash_map(coord_strategy, value_strategy.clone(), nnz)
.prop_map(|hash_map| {
let triplets: Vec<_> = hash_map.into_iter().map(|((i, j), v)| (i, j, v)).collect();
triplets
})
// Although order in the hash map is unspecified, it's not necessarily *random*
// - or, in particular, it does not necessarily sample the whole space of possible outcomes -
// so we additionally shuffle the triplets
.prop_shuffle()
}
/// A strategy for producing COO matrices without duplicate entries.
///
/// The values of the matrix are picked from the provided `value_strategy`, while the size of the
/// generated matrices is determined by the ranges `rows` and `cols`. The number of explicitly
/// stored entries is bounded from above by `max_nonzeros`. Note that the matrix might still
/// contain explicitly stored zeroes if the value strategy is capable of generating zero values.
pub fn coo_no_duplicates<T>(
value_strategy: T,
rows: impl Into<DimRange>,
cols: impl Into<DimRange>,
max_nonzeros: usize,
) -> impl Strategy<Value = CooMatrix<T::Value>>
where
T: Strategy + Clone + 'static,
T::Value: Scalar,
{
(
rows.into().to_range_inclusive(),
cols.into().to_range_inclusive(),
)
.prop_flat_map(move |(nrows, ncols)| {
let max_nonzeros = min(max_nonzeros, nrows * ncols);
let size_range = 0..=max_nonzeros;
let value_strategy = value_strategy.clone();
size_range
.prop_flat_map(move |nnz| {
let value_strategy = value_strategy.clone();
if nnz as f64 > 0.10 * (nrows as f64) * (ncols as f64) {
// If the number of nnz is sufficiently dense, then use the dense
// sample strategy
dense_triplet_strategy(value_strategy, nrows, ncols, nnz).boxed()
} else {
// Otherwise, use a hash map strategy so that we can get a sparse sampling
// (so that complexity is rather on the order of max_nnz than nrows * ncols)
sparse_triplet_strategy(value_strategy, nrows, ncols, nnz).boxed()
}
})
.prop_map(move |triplets| {
let mut coo = CooMatrix::new(nrows, ncols);
for (i, j, v) in triplets {
coo.push(i, j, v);
}
coo
})
})
}
/// A strategy for producing COO matrices with duplicate entries.
///
/// The values of the matrix are picked from the provided `value_strategy`, while the size of the
/// generated matrices is determined by the ranges `rows` and `cols`. Note that the values
/// only apply to individual entries, and since this strategy can generate duplicate entries,
/// the matrix will generally have values outside the range determined by `value_strategy` when
/// converted to other formats, since the duplicate entries are summed together in this case.
///
/// The number of explicitly stored entries is bounded from above by `max_nonzeros`. The maximum
/// number of duplicate entries is determined by `max_duplicates`. Note that the matrix might still
/// contain explicitly stored zeroes if the value strategy is capable of generating zero values.
pub fn coo_with_duplicates<T>(
value_strategy: T,
rows: impl Into<DimRange>,
cols: impl Into<DimRange>,
max_nonzeros: usize,
max_duplicates: usize,
) -> impl Strategy<Value = CooMatrix<T::Value>>
where
T: Strategy + Clone + 'static,
T::Value: Scalar,
{
let coo_strategy = coo_no_duplicates(value_strategy.clone(), rows, cols, max_nonzeros);
let duplicate_strategy = vec((any::<Index>(), value_strategy.clone()), 0..=max_duplicates);
(coo_strategy, duplicate_strategy)
.prop_flat_map(|(coo, duplicates)| {
let mut triplets: Vec<(usize, usize, T::Value)> = coo
.triplet_iter()
.map(|(i, j, v)| (i, j, v.clone()))
.collect();
if !triplets.is_empty() {
let duplicates_iter: Vec<_> = duplicates
.into_iter()
.map(|(idx, val)| {
let (i, j, _) = idx.get(&triplets);
(*i, *j, val)
})
.collect();
triplets.extend(duplicates_iter);
}
// Make sure to shuffle so that the duplicates get mixed in with the non-duplicates
let shuffled = Just(triplets).prop_shuffle();
(Just(coo.nrows()), Just(coo.ncols()), shuffled)
})
.prop_map(move |(nrows, ncols, triplets)| {
let mut coo = CooMatrix::new(nrows, ncols);
for (i, j, v) in triplets {
coo.push(i, j, v);
}
coo
})
}
fn sparsity_pattern_from_row_major_coords<I>(
nmajor: usize,
nminor: usize,
coords: I,
) -> SparsityPattern
where
I: Iterator<Item = (usize, usize)> + ExactSizeIterator,
{
let mut minors = Vec::with_capacity(coords.len());
let mut offsets = Vec::with_capacity(nmajor + 1);
let mut current_major = 0;
offsets.push(0);
for (idx, (i, j)) in coords.enumerate() {
assert!(i >= current_major);
assert!(
i < nmajor && j < nminor,
"Generated coords are out of bounds"
);
while current_major < i {
offsets.push(idx);
current_major += 1;
}
minors.push(j);
}
while current_major < nmajor {
offsets.push(minors.len());
current_major += 1;
}
assert_eq!(offsets.first().unwrap(), &0);
assert_eq!(offsets.len(), nmajor + 1);
SparsityPattern::try_from_offsets_and_indices(nmajor, nminor, offsets, minors)
.expect("Internal error: Generated sparsity pattern is invalid")
}
/// A strategy for generating sparsity patterns.
pub fn sparsity_pattern(
major_lanes: impl Into<DimRange>,
minor_lanes: impl Into<DimRange>,
max_nonzeros: usize,
) -> impl Strategy<Value = SparsityPattern> {
(
major_lanes.into().to_range_inclusive(),
minor_lanes.into().to_range_inclusive(),
)
.prop_flat_map(move |(nmajor, nminor)| {
let max_nonzeros = min(nmajor * nminor, max_nonzeros);
(Just(nmajor), Just(nminor), 0..=max_nonzeros)
})
.prop_flat_map(move |(nmajor, nminor, nnz)| {
if 10 * nnz < nmajor * nminor {
// If nnz is small compared to a dense matrix, then use a sparse sampling strategy
btree_set((0..nmajor, 0..nminor), nnz)
.prop_map(move |coords| {
sparsity_pattern_from_row_major_coords(nmajor, nminor, coords.into_iter())
})
.boxed()
} else {
// If the required number of nonzeros is sufficiently dense,
// we instead use a dense sampling
dense_row_major_coord_strategy(nmajor, nminor, nnz)
.prop_map(move |coords| {
let coords = coords.into_iter();
sparsity_pattern_from_row_major_coords(nmajor, nminor, coords)
})
.boxed()
}
})
}
/// A strategy for generating CSR matrices.
pub fn csr<T>(
value_strategy: T,
rows: impl Into<DimRange>,
cols: impl Into<DimRange>,
max_nonzeros: usize,
) -> impl Strategy<Value = CsrMatrix<T::Value>>
where
T: Strategy + Clone + 'static,
T::Value: Scalar,
{
let rows = rows.into();
let cols = cols.into();
sparsity_pattern(
rows.lower_bound().value()..=rows.upper_bound().value(),
cols.lower_bound().value()..=cols.upper_bound().value(),
max_nonzeros,
)
.prop_flat_map(move |pattern| {
let nnz = pattern.nnz();
let values = vec![value_strategy.clone(); nnz];
(Just(pattern), values)
})
.prop_map(|(pattern, values)| {
CsrMatrix::try_from_pattern_and_values(pattern, values)
.expect("Internal error: Generated CsrMatrix is invalid")
})
}
/// A strategy for generating CSC matrices.
pub fn csc<T>(
value_strategy: T,
rows: impl Into<DimRange>,
cols: impl Into<DimRange>,
max_nonzeros: usize,
) -> impl Strategy<Value = CscMatrix<T::Value>>
where
T: Strategy + Clone + 'static,
T::Value: Scalar,
{
let rows = rows.into();
let cols = cols.into();
sparsity_pattern(
cols.lower_bound().value()..=cols.upper_bound().value(),
rows.lower_bound().value()..=rows.upper_bound().value(),
max_nonzeros,
)
.prop_flat_map(move |pattern| {
let nnz = pattern.nnz();
let values = vec![value_strategy.clone(); nnz];
(Just(pattern), values)
})
.prop_map(|(pattern, values)| {
CscMatrix::try_from_pattern_and_values(pattern, values)
.expect("Internal error: Generated CscMatrix is invalid")
})
}