forked from M-Labs/nalgebra
305 lines
10 KiB
Rust
305 lines
10 KiB
Rust
#[cfg(feature = "serde-serialize")]
|
|
use serde::{Deserialize, Serialize};
|
|
|
|
use num::Zero;
|
|
use num_complex::Complex;
|
|
|
|
use simba::scalar::RealField;
|
|
|
|
use crate::ComplexHelper;
|
|
use na::dimension::{Const, Dim, DimName};
|
|
use na::{DefaultAllocator, Matrix, OMatrix, OVector, Scalar, allocator::Allocator};
|
|
|
|
use lapack;
|
|
|
|
/// Eigendecomposition of a real square matrix with real or complex eigenvalues.
|
|
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
|
#[cfg_attr(
|
|
feature = "serde-serialize",
|
|
serde(
|
|
bound(serialize = "DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
|
|
OVector<T, D>: Serialize,
|
|
OMatrix<T, D, D>: Serialize")
|
|
)
|
|
)]
|
|
#[cfg_attr(
|
|
feature = "serde-serialize",
|
|
serde(
|
|
bound(deserialize = "DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
|
|
OVector<T, D>: Serialize,
|
|
OMatrix<T, D, D>: Deserialize<'de>")
|
|
)
|
|
)]
|
|
#[derive(Clone, Debug)]
|
|
pub struct Eigen<T: Scalar, D: Dim>
|
|
where
|
|
DefaultAllocator: Allocator<T, D> + Allocator<T, D, D>,
|
|
{
|
|
/// The real parts of eigenvalues of the decomposed matrix.
|
|
pub eigenvalues_re: OVector<T, D>,
|
|
/// The imaginary parts of the eigenvalues of the decomposed matrix.
|
|
pub eigenvalues_im: OVector<T, D>,
|
|
/// The (right) eigenvectors of the decomposed matrix.
|
|
pub eigenvectors: Option<OMatrix<T, D, D>>,
|
|
/// The left eigenvectors of the decomposed matrix.
|
|
pub left_eigenvectors: Option<OMatrix<T, D, D>>,
|
|
}
|
|
|
|
impl<T: Scalar + Copy, D: Dim> Copy for Eigen<T, D>
|
|
where
|
|
DefaultAllocator: Allocator<T, D> + Allocator<T, D, D>,
|
|
OVector<T, D>: Copy,
|
|
OMatrix<T, D, D>: Copy,
|
|
{
|
|
}
|
|
|
|
impl<T: EigenScalar + RealField, D: Dim> Eigen<T, D>
|
|
where
|
|
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
|
|
{
|
|
/// Computes the eigenvalues and eigenvectors of the square matrix `m`.
|
|
///
|
|
/// If `eigenvectors` is `false` then, the eigenvectors are not computed explicitly.
|
|
pub fn new(
|
|
mut m: OMatrix<T, D, D>,
|
|
left_eigenvectors: bool,
|
|
eigenvectors: bool,
|
|
) -> Option<Eigen<T, D>> {
|
|
assert!(
|
|
m.is_square(),
|
|
"Unable to compute the eigenvalue decomposition of a non-square matrix."
|
|
);
|
|
|
|
let ljob = if left_eigenvectors { b'V' } else { b'N' };
|
|
let rjob = if eigenvectors { b'V' } else { b'N' };
|
|
|
|
let (nrows, ncols) = m.shape_generic();
|
|
let n = nrows.value();
|
|
|
|
let lda = n as i32;
|
|
|
|
// TODO: avoid the initialization?
|
|
let mut wr = Matrix::zeros_generic(nrows, Const::<1>);
|
|
// TODO: Tap into the workspace.
|
|
let mut wi = Matrix::zeros_generic(nrows, Const::<1>);
|
|
|
|
let mut info = 0;
|
|
let mut placeholder1 = [T::zero()];
|
|
let mut placeholder2 = [T::zero()];
|
|
|
|
let lwork = T::xgeev_work_size(
|
|
ljob,
|
|
rjob,
|
|
n as i32,
|
|
m.as_mut_slice(),
|
|
lda,
|
|
wr.as_mut_slice(),
|
|
wi.as_mut_slice(),
|
|
&mut placeholder1,
|
|
n as i32,
|
|
&mut placeholder2,
|
|
n as i32,
|
|
&mut info,
|
|
);
|
|
|
|
lapack_check!(info);
|
|
|
|
let mut work = vec![T::zero(); lwork as usize];
|
|
let mut vl = if left_eigenvectors {
|
|
Some(Matrix::zeros_generic(nrows, ncols))
|
|
} else {
|
|
None
|
|
};
|
|
let mut vr = if eigenvectors {
|
|
Some(Matrix::zeros_generic(nrows, ncols))
|
|
} else {
|
|
None
|
|
};
|
|
|
|
let vl_ref = vl
|
|
.as_mut()
|
|
.map(|m| m.as_mut_slice())
|
|
.unwrap_or(&mut placeholder1);
|
|
let vr_ref = vr
|
|
.as_mut()
|
|
.map(|m| m.as_mut_slice())
|
|
.unwrap_or(&mut placeholder2);
|
|
|
|
T::xgeev(
|
|
ljob,
|
|
rjob,
|
|
n as i32,
|
|
m.as_mut_slice(),
|
|
lda,
|
|
wr.as_mut_slice(),
|
|
wi.as_mut_slice(),
|
|
vl_ref,
|
|
if left_eigenvectors { n as i32 } else { 1 },
|
|
vr_ref,
|
|
if eigenvectors { n as i32 } else { 1 },
|
|
&mut work,
|
|
lwork,
|
|
&mut info,
|
|
);
|
|
lapack_check!(info);
|
|
|
|
Some(Self {
|
|
eigenvalues_re: wr,
|
|
eigenvalues_im: wi,
|
|
left_eigenvectors: vl,
|
|
eigenvectors: vr
|
|
})
|
|
}
|
|
|
|
/// Returns `true` if all the eigenvalues are real.
|
|
pub fn eigenvalues_are_real(&self) -> bool {
|
|
self.eigenvalues_im.iter().all(|e| e.is_zero())
|
|
}
|
|
|
|
/// The determinant of the decomposed matrix.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn determinant(&self) -> Complex<T> {
|
|
let mut det: Complex<T> = na::one();
|
|
for (re, im) in self.eigenvalues_re.iter().zip(self.eigenvalues_im.iter()) {
|
|
det *= Complex::new(re.clone(), im.clone());
|
|
}
|
|
|
|
det
|
|
}
|
|
|
|
/// Returns a tuple of vectors. The elements of the tuple are the complex eigenvalues, complex left eigenvectors and complex right eigenvectors respectively.
|
|
/// The elements appear as conjugate pairs within each vector, with the positive of the pair always being first.
|
|
pub fn get_complex_elements(&self) -> (Option<Vec<Complex<T>>>, Option<Vec<OVector<Complex<T>, D>>>, Option<Vec<OVector<Complex<T>, D>>>) where DefaultAllocator: Allocator<Complex<T>, D> {
|
|
panic!("TODO");
|
|
// match !self.eigenvalues_are_real() {
|
|
// true => (None, None, None),
|
|
// false => {
|
|
// let number_of_elements = self.eigenvalues_re.nrows();
|
|
// let number_of_complex_entries = self.eigenvalues_im.iter().fold(0, |acc, e| if !e.is_zero() {acc + 1} else {acc});
|
|
// let mut eigenvalues = Vec::<Complex<T>>::with_capacity(2*number_of_complex_entries);
|
|
// let mut eigenvectors = match self.eigenvectors.is_some() {
|
|
// true => Some(Vec::<OVector<Complex<T>, D>>::with_capacity(2*number_of_complex_entries)),
|
|
// false => None
|
|
// };
|
|
// let mut left_eigenvectors = match self.left_eigenvectors.is_some() {
|
|
// true => Some(Vec::<OVector<Complex<T>, D>>::with_capacity(2*number_of_complex_entries)),
|
|
// false => None
|
|
// };
|
|
|
|
// let eigenvectors_raw = self.eigenvectors;
|
|
// let left_eigenvectors_raw = self.left_eigenvectors;
|
|
|
|
// for mut i in 0..number_of_elements {
|
|
// if self.eigenvalues_im[i] != T::zero() {
|
|
// //Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having the positive imaginary part first.
|
|
// eigenvalues.push(Complex::<T>::new(self.eigenvalues_re[i].clone(), self.eigenvalues_im[i].clone()));
|
|
// eigenvalues.push(Complex::<T>::new(self.eigenvalues_re[i].clone(), -self.eigenvalues_im[i].clone()));
|
|
|
|
// if eigenvectors.is_some() {
|
|
// let mut r1_vec = OVector::<Complex<T>, D>::zeros(number_of_elements);
|
|
// let mut r1_vec_conj = OVector::<Complex<T>, D>::zeros(number_of_elements);
|
|
|
|
// for j in 0..number_of_elements {
|
|
// r1_vec[j] = Complex::<T>::new(self.eigenvectors.unwrap()[(i,j)].clone(),self.eigenvectors.unwrap()[(i,j+1)].clone());
|
|
// r1_vec_conj[j] = Complex::<T>::new(self.eigenvectors.unwrap()[(i,j)].clone(),-self.eigenvectors.unwrap()[(i,j+1)].clone());
|
|
// }
|
|
|
|
// eigenvectors.unwrap().push(r1_vec);
|
|
// eigenvectors.unwrap().push(r1_vec_conj);
|
|
// }
|
|
|
|
|
|
// if left_eigenvectors.is_some() {
|
|
// //TODO: Do the same for left
|
|
// }
|
|
|
|
|
|
// i += 1;
|
|
// }
|
|
|
|
// }
|
|
// (Some(eigenvalues), left_eigenvectors, eigenvectors)
|
|
// }
|
|
// }
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Lapack functions dispatch.
|
|
*
|
|
*/
|
|
/// Trait implemented by scalar type for which Lapack function exist to compute the
|
|
/// eigendecomposition.
|
|
pub trait EigenScalar: Scalar {
|
|
#[allow(missing_docs)]
|
|
fn xgeev(
|
|
jobvl: u8,
|
|
jobvr: u8,
|
|
n: i32,
|
|
a: &mut [Self],
|
|
lda: i32,
|
|
wr: &mut [Self],
|
|
wi: &mut [Self],
|
|
vl: &mut [Self],
|
|
ldvl: i32,
|
|
vr: &mut [Self],
|
|
ldvr: i32,
|
|
work: &mut [Self],
|
|
lwork: i32,
|
|
info: &mut i32,
|
|
);
|
|
#[allow(missing_docs)]
|
|
fn xgeev_work_size(
|
|
jobvl: u8,
|
|
jobvr: u8,
|
|
n: i32,
|
|
a: &mut [Self],
|
|
lda: i32,
|
|
wr: &mut [Self],
|
|
wi: &mut [Self],
|
|
vl: &mut [Self],
|
|
ldvl: i32,
|
|
vr: &mut [Self],
|
|
ldvr: i32,
|
|
info: &mut i32,
|
|
) -> i32;
|
|
}
|
|
|
|
macro_rules! real_eigensystem_scalar_impl (
|
|
($N: ty, $xgeev: path) => (
|
|
impl EigenScalar for $N {
|
|
#[inline]
|
|
fn xgeev(jobvl: u8, jobvr: u8, n: i32, a: &mut [Self], lda: i32,
|
|
wr: &mut [Self], wi: &mut [Self],
|
|
vl: &mut [Self], ldvl: i32, vr: &mut [Self], ldvr: i32,
|
|
work: &mut [Self], lwork: i32, info: &mut i32) {
|
|
unsafe { $xgeev(jobvl, jobvr, n, a, lda, wr, wi, vl, ldvl, vr, ldvr, work, lwork, info) }
|
|
}
|
|
|
|
|
|
#[inline]
|
|
fn xgeev_work_size(jobvl: u8, jobvr: u8, n: i32, a: &mut [Self], lda: i32,
|
|
wr: &mut [Self], wi: &mut [Self], vl: &mut [Self], ldvl: i32,
|
|
vr: &mut [Self], ldvr: i32, info: &mut i32) -> i32 {
|
|
let mut work = [ Zero::zero() ];
|
|
let lwork = -1 as i32;
|
|
|
|
unsafe { $xgeev(jobvl, jobvr, n, a, lda, wr, wi, vl, ldvl, vr, ldvr, &mut work, lwork, info) };
|
|
ComplexHelper::real_part(work[0]) as i32
|
|
}
|
|
}
|
|
)
|
|
);
|
|
|
|
real_eigensystem_scalar_impl!(f32, lapack::sgeev);
|
|
real_eigensystem_scalar_impl!(f64, lapack::dgeev);
|
|
|
|
//// TODO: decomposition of complex matrix and matrices with complex eigenvalues.
|
|
// eigensystem_complex_impl!(f32, lapack::cgeev);
|
|
// eigensystem_complex_impl!(f64, lapack::zgeev);
|