forked from M-Labs/nalgebra
427 lines
8.9 KiB
Rust
427 lines
8.9 KiB
Rust
#[macro_escape];
|
|
|
|
macro_rules! clone_impl(
|
|
// FIXME: use 'Clone' alone. For the moment, we need 'Copy' because the automatic
|
|
// implementation of Clone for [t, ..n] is badly typed.
|
|
($t: ident) => (
|
|
impl<N: Clone + Copy> Clone for $t<N>
|
|
{
|
|
#[inline]
|
|
fn clone(&self) -> $t<N>
|
|
{
|
|
$t {
|
|
mij: copy self.mij
|
|
}
|
|
}
|
|
}
|
|
)
|
|
)
|
|
|
|
macro_rules! mat_impl(
|
|
($t: ident, $dim: expr) => (
|
|
impl<N> $t<N>
|
|
{
|
|
#[inline]
|
|
pub fn new(mij: [N, ..$dim * $dim]) -> $t<N>
|
|
{ $t { mij: mij } }
|
|
|
|
#[inline]
|
|
pub fn offset(&self, i: uint, j: uint) -> uint
|
|
{ i * $dim + j }
|
|
}
|
|
)
|
|
)
|
|
|
|
macro_rules! one_impl(
|
|
($t: ident, [ $($value: ident)|+ ] ) => (
|
|
impl<N: Clone + One + Zero> One for $t<N>
|
|
{
|
|
#[inline]
|
|
fn one() -> $t<N>
|
|
{
|
|
let (_0, _1) = (Zero::zero::<N>(), One::one::<N>());
|
|
return $t::new( [ $( $value.clone(), )+ ] )
|
|
}
|
|
}
|
|
)
|
|
)
|
|
|
|
macro_rules! zero_impl(
|
|
($t: ident, [ $($value: ident)|+ ] ) => (
|
|
impl<N: Clone + Zero> Zero for $t<N>
|
|
{
|
|
#[inline]
|
|
fn zero() -> $t<N>
|
|
{
|
|
let _0 = Zero::zero::<N>();
|
|
return $t::new( [ $( $value.clone(), )+ ] )
|
|
}
|
|
|
|
#[inline]
|
|
fn is_zero(&self) -> bool
|
|
{ self.mij.iter().all(|e| e.is_zero()) }
|
|
}
|
|
)
|
|
)
|
|
|
|
macro_rules! dim_impl(
|
|
($t: ident, $dim: expr) => (
|
|
impl<N> Dim for $t<N>
|
|
{
|
|
#[inline]
|
|
fn dim() -> uint
|
|
{ $dim }
|
|
}
|
|
)
|
|
)
|
|
|
|
macro_rules! mat_indexable_impl(
|
|
($t: ident, $dim: expr) => (
|
|
impl<N: Clone> Indexable<(uint, uint), N> for $t<N>
|
|
{
|
|
#[inline]
|
|
pub fn at(&self, (i, j): (uint, uint)) -> N
|
|
{ self.mij[self.offset(i, j)].clone() }
|
|
|
|
#[inline]
|
|
pub fn set(&mut self, (i, j): (uint, uint), t: N)
|
|
{ self.mij[self.offset(i, j)] = t }
|
|
}
|
|
)
|
|
)
|
|
|
|
macro_rules! column_impl(
|
|
($t: ident, $dim: expr) => (
|
|
impl<N: Clone, V: Zero + Iterable<N> + IterableMut<N>> Column<V> for $t<N>
|
|
{
|
|
fn set_column(&mut self, col: uint, v: V)
|
|
{
|
|
for v.iter().enumerate().advance |(i, e)|
|
|
{
|
|
if i == Dim::dim::<$t<N>>()
|
|
{ break }
|
|
|
|
self.set((i, col), e.clone());
|
|
}
|
|
}
|
|
|
|
fn column(&self, col: uint) -> V
|
|
{
|
|
let mut res = Zero::zero::<V>();
|
|
|
|
for res.mut_iter().enumerate().advance |(i, e)|
|
|
{
|
|
if i >= Dim::dim::<$t<N>>()
|
|
{ break }
|
|
|
|
*e = self.at((i, col));
|
|
}
|
|
|
|
res
|
|
}
|
|
}
|
|
)
|
|
)
|
|
|
|
macro_rules! mul_impl(
|
|
($t: ident, $dim: expr) => (
|
|
impl<N: Clone + Ring>
|
|
Mul<$t<N>, $t<N>> for $t<N>
|
|
{
|
|
fn mul(&self, other: &$t<N>) -> $t<N>
|
|
{
|
|
let mut res: $t<N> = Zero::zero();
|
|
|
|
for iterate(0u, $dim) |i|
|
|
{
|
|
for iterate(0u, $dim) |j|
|
|
{
|
|
let mut acc = Zero::zero::<N>();
|
|
|
|
for iterate(0u, $dim) |k|
|
|
{ acc = acc + self.at((i, k)) * other.at((k, j)); }
|
|
|
|
res.set((i, j), acc);
|
|
}
|
|
}
|
|
|
|
res
|
|
}
|
|
}
|
|
)
|
|
)
|
|
|
|
macro_rules! rmul_impl(
|
|
($t: ident, $v: ident, $dim: expr) => (
|
|
impl<N: Clone + Ring>
|
|
RMul<$v<N>> for $t<N>
|
|
{
|
|
fn rmul(&self, other: &$v<N>) -> $v<N>
|
|
{
|
|
let mut res : $v<N> = Zero::zero();
|
|
|
|
for iterate(0u, $dim) |i|
|
|
{
|
|
for iterate(0u, $dim) |j|
|
|
{ res.at[i] = res.at[i] + other.at[j] * self.at((i, j)); }
|
|
}
|
|
|
|
res
|
|
}
|
|
}
|
|
)
|
|
)
|
|
|
|
macro_rules! lmul_impl(
|
|
($t: ident, $v: ident, $dim: expr) => (
|
|
impl<N: Clone + Ring>
|
|
LMul<$v<N>> for $t<N>
|
|
{
|
|
fn lmul(&self, other: &$v<N>) -> $v<N>
|
|
{
|
|
|
|
let mut res : $v<N> = Zero::zero();
|
|
|
|
for iterate(0u, $dim) |i|
|
|
{
|
|
for iterate(0u, $dim) |j|
|
|
{ res.at[i] = res.at[i] + other.at[j] * self.at((j, i)); }
|
|
}
|
|
|
|
res
|
|
}
|
|
}
|
|
)
|
|
)
|
|
|
|
macro_rules! transform_impl(
|
|
($t: ident, $v: ident) => (
|
|
impl<N: Clone + Copy + DivisionRing + Eq>
|
|
Transform<$v<N>> for $t<N>
|
|
{
|
|
#[inline]
|
|
fn transform_vec(&self, v: &$v<N>) -> $v<N>
|
|
{ self.rmul(v) }
|
|
|
|
#[inline]
|
|
fn inv_transform(&self, v: &$v<N>) -> $v<N>
|
|
{
|
|
match self.inverse()
|
|
{
|
|
Some(t) => t.transform_vec(v),
|
|
None => fail!("Cannot use inv_transform on a non-inversible matrix.")
|
|
}
|
|
}
|
|
}
|
|
)
|
|
)
|
|
|
|
macro_rules! inv_impl(
|
|
($t: ident, $dim: expr) => (
|
|
impl<N: Clone + Copy + Eq + DivisionRing>
|
|
Inv for $t<N>
|
|
{
|
|
#[inline]
|
|
fn inverse(&self) -> Option<$t<N>>
|
|
{
|
|
let mut res : $t<N> = self.clone();
|
|
|
|
if res.inplace_inverse()
|
|
{ Some(res) }
|
|
else
|
|
{ None }
|
|
}
|
|
|
|
fn inplace_inverse(&mut self) -> bool
|
|
{
|
|
let mut res: $t<N> = One::one();
|
|
let _0N: N = Zero::zero();
|
|
|
|
// inversion using Gauss-Jordan elimination
|
|
for iterate(0u, $dim) |k|
|
|
{
|
|
// search a non-zero value on the k-th column
|
|
// FIXME: would it be worth it to spend some more time searching for the
|
|
// max instead?
|
|
|
|
let mut n0 = k; // index of a non-zero entry
|
|
|
|
while (n0 != $dim)
|
|
{
|
|
if self.at((n0, k)) != _0N
|
|
{ break; }
|
|
|
|
n0 = n0 + 1;
|
|
}
|
|
|
|
if n0 == $dim
|
|
{ return false }
|
|
|
|
// swap pivot line
|
|
if n0 != k
|
|
{
|
|
for iterate(0u, $dim) |j|
|
|
{
|
|
let off_n0_j = self.offset(n0, j);
|
|
let off_k_j = self.offset(k, j);
|
|
|
|
self.mij.swap(off_n0_j, off_k_j);
|
|
res.mij.swap(off_n0_j, off_k_j);
|
|
}
|
|
}
|
|
|
|
let pivot = self.at((k, k));
|
|
|
|
for iterate(k, $dim) |j|
|
|
{
|
|
let selfval = self.at((k, j)) / pivot;
|
|
self.set((k, j), selfval);
|
|
}
|
|
|
|
for iterate(0u, $dim) |j|
|
|
{
|
|
let resval = res.at((k, j)) / pivot;
|
|
res.set((k, j), resval);
|
|
}
|
|
|
|
for iterate(0u, $dim) |l|
|
|
{
|
|
if l != k
|
|
{
|
|
let normalizer = self.at((l, k));
|
|
|
|
for iterate(k, $dim) |j|
|
|
{
|
|
let selfval = self.at((l, j)) - self.at((k, j)) * normalizer;
|
|
self.set((l, j), selfval);
|
|
}
|
|
|
|
for iterate(0u, $dim) |j|
|
|
{
|
|
let resval = res.at((l, j)) - res.at((k, j)) * normalizer;
|
|
res.set((l, j), resval);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
*self = res;
|
|
|
|
true
|
|
}
|
|
}
|
|
)
|
|
)
|
|
|
|
macro_rules! transpose_impl(
|
|
($t: ident, $dim: expr) => (
|
|
impl<N: Clone + Copy> Transpose for $t<N>
|
|
{
|
|
#[inline]
|
|
fn transposed(&self) -> $t<N>
|
|
{
|
|
let mut res = self.clone();
|
|
|
|
res.transpose();
|
|
|
|
res
|
|
}
|
|
|
|
fn transpose(&mut self)
|
|
{
|
|
for iterate(1u, $dim) |i|
|
|
{
|
|
for iterate(0u, $dim - 1) |j|
|
|
{
|
|
let off_i_j = self.offset(i, j);
|
|
let off_j_i = self.offset(j, i);
|
|
|
|
self.mij.swap(off_i_j, off_j_i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
)
|
|
)
|
|
|
|
macro_rules! approx_eq_impl(
|
|
($t: ident) => (
|
|
impl<N: ApproxEq<N>> ApproxEq<N> for $t<N>
|
|
{
|
|
#[inline]
|
|
fn approx_epsilon() -> N
|
|
{ ApproxEq::approx_epsilon::<N, N>() }
|
|
|
|
#[inline]
|
|
fn approx_eq(&self, other: &$t<N>) -> bool
|
|
{
|
|
let mut zip = self.mij.iter().zip(other.mij.iter());
|
|
|
|
do zip.all |(a, b)| { a.approx_eq(b) }
|
|
}
|
|
|
|
#[inline]
|
|
fn approx_eq_eps(&self, other: &$t<N>, epsilon: &N) -> bool
|
|
{
|
|
let mut zip = self.mij.iter().zip(other.mij.iter());
|
|
|
|
do zip.all |(a, b)| { a.approx_eq_eps(b, epsilon) }
|
|
}
|
|
}
|
|
)
|
|
)
|
|
|
|
macro_rules! rand_impl(
|
|
($t: ident, $param: ident, [ $($elem: ident)|+ ]) => (
|
|
impl<N: Rand> Rand for $t<N>
|
|
{
|
|
#[inline]
|
|
fn rand<R: Rng>($param: &mut R) -> $t<N>
|
|
{ $t::new([ $( $elem.gen(), )+ ]) }
|
|
}
|
|
)
|
|
)
|
|
|
|
macro_rules! to_homogeneous_impl(
|
|
($t: ident, $t2: ident, $dim: expr) => (
|
|
impl<N: One + Zero + Clone> ToHomogeneous<$t2<N>> for $t<N>
|
|
{
|
|
fn to_homogeneous(&self) -> $t2<N>
|
|
{
|
|
let mut res: $t2<N> = One::one();
|
|
|
|
for iterate(0, $dim) |i|
|
|
{
|
|
for iterate(0, $dim) |j|
|
|
{ res.set((i, j), self.at((i, j))) }
|
|
}
|
|
|
|
res
|
|
}
|
|
}
|
|
)
|
|
)
|
|
|
|
macro_rules! from_homogeneous_impl(
|
|
($t: ident, $t2: ident, $dim2: expr) => (
|
|
impl<N: One + Zero + Clone> FromHomogeneous<$t2<N>> for $t<N>
|
|
{
|
|
fn from_homogeneous(m: &$t2<N>) -> $t<N>
|
|
{
|
|
let mut res: $t<N> = One::one();
|
|
|
|
for iterate(0, $dim2) |i|
|
|
{
|
|
for iterate(0, $dim2) |j|
|
|
{ res.set((i, j), m.at((i, j))) }
|
|
}
|
|
|
|
// FIXME: do we have to deal the lost components
|
|
// (like if the 1 is not a 1… do we have to divide?)
|
|
|
|
res
|
|
}
|
|
}
|
|
)
|
|
)
|