forked from M-Labs/nalgebra
79 lines
2.6 KiB
Rust
79 lines
2.6 KiB
Rust
#![cfg(feature = "arbitrary")]
|
|
|
|
macro_rules! gen_tests(
|
|
($module: ident, $scalar: ty) => {
|
|
mod $module {
|
|
use na::{DMatrix, Matrix2, Matrix3x5, Matrix4, Matrix5x3};
|
|
#[allow(unused_imports)]
|
|
use crate::core::helper::{RandScalar, RandComplex};
|
|
|
|
quickcheck! {
|
|
fn bidiagonal(m: DMatrix<$scalar>) -> bool {
|
|
let m = m.map(|e| e.0);
|
|
if m.len() == 0 {
|
|
return true;
|
|
}
|
|
|
|
let bidiagonal = m.clone().bidiagonalize();
|
|
let (u, d, v_t) = bidiagonal.unpack();
|
|
|
|
relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7)
|
|
}
|
|
|
|
fn bidiagonal_static_5_3(m: Matrix5x3<$scalar>) -> bool {
|
|
let m = m.map(|e| e.0);
|
|
let bidiagonal = m.bidiagonalize();
|
|
let (u, d, v_t) = bidiagonal.unpack();
|
|
|
|
relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7)
|
|
}
|
|
|
|
fn bidiagonal_static_3_5(m: Matrix3x5<$scalar>) -> bool {
|
|
let m = m.map(|e| e.0);
|
|
let bidiagonal = m.bidiagonalize();
|
|
let (u, d, v_t) = bidiagonal.unpack();
|
|
|
|
relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7)
|
|
}
|
|
|
|
fn bidiagonal_static_square(m: Matrix4<$scalar>) -> bool {
|
|
let m = m.map(|e| e.0);
|
|
let bidiagonal = m.bidiagonalize();
|
|
let (u, d, v_t) = bidiagonal.unpack();
|
|
|
|
relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7)
|
|
}
|
|
|
|
fn bidiagonal_static_square_2x2(m: Matrix2<$scalar>) -> bool {
|
|
let m = m.map(|e| e.0);
|
|
let bidiagonal = m.bidiagonalize();
|
|
let (u, d, v_t) = bidiagonal.unpack();
|
|
|
|
relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
);
|
|
|
|
gen_tests!(complex, RandComplex<f64>);
|
|
gen_tests!(f64, RandScalar<f64>);
|
|
|
|
#[test]
|
|
fn bidiagonal_identity() {
|
|
let m = na::DMatrix::<f64>::identity(10, 10);
|
|
let bidiagonal = m.clone().bidiagonalize();
|
|
let (u, d, v_t) = bidiagonal.unpack();
|
|
assert_eq!(m, &u * d * &v_t);
|
|
|
|
let m = na::DMatrix::<f64>::identity(10, 15);
|
|
let bidiagonal = m.clone().bidiagonalize();
|
|
let (u, d, v_t) = bidiagonal.unpack();
|
|
assert_eq!(m, &u * d * &v_t);
|
|
|
|
let m = na::DMatrix::<f64>::identity(15, 10);
|
|
let bidiagonal = m.clone().bidiagonalize();
|
|
let (u, d, v_t) = bidiagonal.unpack();
|
|
assert_eq!(m, &u * d * &v_t);
|
|
}
|