forked from M-Labs/nalgebra
399 lines
11 KiB
Rust
399 lines
11 KiB
Rust
use std::mem::MaybeUninit;
|
|
|
|
use crate::allocator::Allocator;
|
|
use crate::storage::Storage;
|
|
use crate::{Const, DefaultAllocator, Dim, Matrix, OVector, RowOVector, Scalar, VectorSlice, U1};
|
|
use num::Zero;
|
|
use simba::scalar::{ClosedAdd, Field, SupersetOf};
|
|
|
|
/// # Folding on columns and rows
|
|
impl<T, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
|
|
/// Returns a row vector where each element is the result of the application of `f` on the
|
|
/// corresponding column of the original matrix.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn compress_rows(
|
|
&self,
|
|
f: impl Fn(VectorSlice<T, R, S::RStride, S::CStride>) -> T,
|
|
) -> RowOVector<T, C>
|
|
where
|
|
DefaultAllocator: Allocator<T, U1, C>,
|
|
{
|
|
let ncols = self.data.shape().1;
|
|
let mut res = RowOVector::new_uninitialized_generic(Const::<1>, ncols);
|
|
|
|
for i in 0..ncols.value() {
|
|
// TODO: avoid bound checking of column.
|
|
unsafe {
|
|
*res.get_unchecked_mut((0, i)) = MaybeUninit::new(f(self.column(i)));
|
|
}
|
|
}
|
|
|
|
unsafe { res.assume_init() }
|
|
}
|
|
|
|
/// Returns a column vector where each element is the result of the application of `f` on the
|
|
/// corresponding column of the original matrix.
|
|
///
|
|
/// This is the same as `self.compress_rows(f).transpose()`.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn compress_rows_tr(
|
|
&self,
|
|
f: impl Fn(VectorSlice<T, R, S::RStride, S::CStride>) -> T,
|
|
) -> OVector<T, C>
|
|
where
|
|
DefaultAllocator: Allocator<T, C>,
|
|
{
|
|
let ncols = self.data.shape().1;
|
|
let mut res = Matrix::new_uninitialized_generic(ncols, Const::<1>);
|
|
|
|
for i in 0..ncols.value() {
|
|
// TODO: avoid bound checking of column.
|
|
unsafe {
|
|
*res.vget_unchecked_mut(i) = MaybeUninit::new(f(self.column(i)));
|
|
}
|
|
}
|
|
|
|
unsafe { res.assume_init() }
|
|
}
|
|
|
|
/// Returns a column vector resulting from the folding of `f` on each column of this matrix.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn compress_columns(
|
|
&self,
|
|
mut init: OVector<T, R>,
|
|
f: impl Fn(&mut OVector<T, R>, VectorSlice<T, R, S::RStride, S::CStride>),
|
|
) -> OVector<T, R>
|
|
where
|
|
DefaultAllocator: Allocator<T, R>,
|
|
{
|
|
for i in 0..self.ncols() {
|
|
f(&mut init, self.column(i))
|
|
}
|
|
|
|
init
|
|
}
|
|
}
|
|
|
|
/// # Common statistics operations
|
|
impl<T: Scalar, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
|
|
/*
|
|
*
|
|
* Sum computation.
|
|
*
|
|
*/
|
|
/// The sum of all the elements of this matrix.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use nalgebra::Matrix2x3;
|
|
///
|
|
/// let m = Matrix2x3::new(1.0, 2.0, 3.0,
|
|
/// 4.0, 5.0, 6.0);
|
|
/// assert_eq!(m.sum(), 21.0);
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn sum(&self) -> T
|
|
where
|
|
T: ClosedAdd + Zero,
|
|
{
|
|
self.iter().cloned().fold(T::zero(), |a, b| a + b)
|
|
}
|
|
|
|
/// The sum of all the rows of this matrix.
|
|
///
|
|
/// Use `.row_variance_tr` if you need the result in a column vector instead.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use nalgebra::{Matrix2x3, Matrix3x2};
|
|
/// # use nalgebra::{RowVector2, RowVector3};
|
|
///
|
|
/// let m = Matrix2x3::new(1.0, 2.0, 3.0,
|
|
/// 4.0, 5.0, 6.0);
|
|
/// assert_eq!(m.row_sum(), RowVector3::new(5.0, 7.0, 9.0));
|
|
///
|
|
/// let mint = Matrix3x2::new(1,2,3,4,5,6);
|
|
/// assert_eq!(mint.row_sum(), RowVector2::new(9,12));
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn row_sum(&self) -> RowOVector<T, C>
|
|
where
|
|
T: ClosedAdd + Zero,
|
|
DefaultAllocator: Allocator<T, U1, C>,
|
|
{
|
|
self.compress_rows(|col| col.sum())
|
|
}
|
|
|
|
/// The sum of all the rows of this matrix. The result is transposed and returned as a column vector.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use nalgebra::{Matrix2x3, Matrix3x2};
|
|
/// # use nalgebra::{Vector2, Vector3};
|
|
///
|
|
/// let m = Matrix2x3::new(1.0, 2.0, 3.0,
|
|
/// 4.0, 5.0, 6.0);
|
|
/// assert_eq!(m.row_sum_tr(), Vector3::new(5.0, 7.0, 9.0));
|
|
///
|
|
/// let mint = Matrix3x2::new(1,2,3,4,5,6);
|
|
/// assert_eq!(mint.row_sum_tr(), Vector2::new(9,12));
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn row_sum_tr(&self) -> OVector<T, C>
|
|
where
|
|
T: ClosedAdd + Zero,
|
|
DefaultAllocator: Allocator<T, C>,
|
|
{
|
|
self.compress_rows_tr(|col| col.sum())
|
|
}
|
|
|
|
/// The sum of all the columns of this matrix.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use nalgebra::{Matrix2x3, Matrix3x2};
|
|
/// # use nalgebra::{Vector2, Vector3};
|
|
///
|
|
/// let m = Matrix2x3::new(1.0, 2.0, 3.0,
|
|
/// 4.0, 5.0, 6.0);
|
|
/// assert_eq!(m.column_sum(), Vector2::new(6.0, 15.0));
|
|
///
|
|
/// let mint = Matrix3x2::new(1,2,3,4,5,6);
|
|
/// assert_eq!(mint.column_sum(), Vector3::new(3,7,11));
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn column_sum(&self) -> OVector<T, R>
|
|
where
|
|
T: ClosedAdd + Zero,
|
|
DefaultAllocator: Allocator<T, R>,
|
|
{
|
|
let nrows = self.data.shape().0;
|
|
self.compress_columns(OVector::zeros_generic(nrows, Const::<1>), |out, col| {
|
|
*out += col;
|
|
})
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Variance computation.
|
|
*
|
|
*/
|
|
/// The variance of all the elements of this matrix.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # #[macro_use] extern crate approx;
|
|
/// # use nalgebra::Matrix2x3;
|
|
///
|
|
/// let m = Matrix2x3::new(1.0, 2.0, 3.0,
|
|
/// 4.0, 5.0, 6.0);
|
|
/// assert_relative_eq!(m.variance(), 35.0 / 12.0, epsilon = 1.0e-8);
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn variance(&self) -> T
|
|
where
|
|
T: Field + SupersetOf<f64>,
|
|
{
|
|
if self.is_empty() {
|
|
T::zero()
|
|
} else {
|
|
let val = self.iter().cloned().fold((T::zero(), T::zero()), |a, b| {
|
|
(a.0 + b.inlined_clone() * b.inlined_clone(), a.1 + b)
|
|
});
|
|
let denom = T::one() / crate::convert::<_, T>(self.len() as f64);
|
|
let vd = val.1 * denom.inlined_clone();
|
|
val.0 * denom - vd.inlined_clone() * vd
|
|
}
|
|
}
|
|
|
|
/// The variance of all the rows of this matrix.
|
|
///
|
|
/// Use `.row_variance_tr` if you need the result in a column vector instead.
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use nalgebra::{Matrix2x3, RowVector3};
|
|
///
|
|
/// let m = Matrix2x3::new(1.0, 2.0, 3.0,
|
|
/// 4.0, 5.0, 6.0);
|
|
/// assert_eq!(m.row_variance(), RowVector3::new(2.25, 2.25, 2.25));
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn row_variance(&self) -> RowOVector<T, C>
|
|
where
|
|
T: Field + SupersetOf<f64>,
|
|
DefaultAllocator: Allocator<T, U1, C>,
|
|
{
|
|
self.compress_rows(|col| col.variance())
|
|
}
|
|
|
|
/// The variance of all the rows of this matrix. The result is transposed and returned as a column vector.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use nalgebra::{Matrix2x3, Vector3};
|
|
///
|
|
/// let m = Matrix2x3::new(1.0, 2.0, 3.0,
|
|
/// 4.0, 5.0, 6.0);
|
|
/// assert_eq!(m.row_variance_tr(), Vector3::new(2.25, 2.25, 2.25));
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn row_variance_tr(&self) -> OVector<T, C>
|
|
where
|
|
T: Field + SupersetOf<f64>,
|
|
DefaultAllocator: Allocator<T, C>,
|
|
{
|
|
self.compress_rows_tr(|col| col.variance())
|
|
}
|
|
|
|
/// The variance of all the columns of this matrix.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # #[macro_use] extern crate approx;
|
|
/// # use nalgebra::{Matrix2x3, Vector2};
|
|
///
|
|
/// let m = Matrix2x3::new(1.0, 2.0, 3.0,
|
|
/// 4.0, 5.0, 6.0);
|
|
/// assert_relative_eq!(m.column_variance(), Vector2::new(2.0 / 3.0, 2.0 / 3.0), epsilon = 1.0e-8);
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn column_variance(&self) -> OVector<T, R>
|
|
where
|
|
T: Field + SupersetOf<f64>,
|
|
DefaultAllocator: Allocator<T, R>,
|
|
{
|
|
let (nrows, ncols) = self.data.shape();
|
|
|
|
let mut mean = self.column_mean();
|
|
mean.apply(|e| -(e.inlined_clone() * e));
|
|
|
|
let denom = T::one() / crate::convert::<_, T>(ncols.value() as f64);
|
|
self.compress_columns(mean, |out, col| {
|
|
for i in 0..nrows.value() {
|
|
unsafe {
|
|
let val = col.vget_unchecked(i);
|
|
*out.vget_unchecked_mut(i) +=
|
|
denom.inlined_clone() * val.inlined_clone() * val.inlined_clone()
|
|
}
|
|
}
|
|
})
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Mean computation.
|
|
*
|
|
*/
|
|
/// The mean of all the elements of this matrix.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use nalgebra::Matrix2x3;
|
|
///
|
|
/// let m = Matrix2x3::new(1.0, 2.0, 3.0,
|
|
/// 4.0, 5.0, 6.0);
|
|
/// assert_eq!(m.mean(), 3.5);
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn mean(&self) -> T
|
|
where
|
|
T: Field + SupersetOf<f64>,
|
|
{
|
|
if self.is_empty() {
|
|
T::zero()
|
|
} else {
|
|
self.sum() / crate::convert(self.len() as f64)
|
|
}
|
|
}
|
|
|
|
/// The mean of all the rows of this matrix.
|
|
///
|
|
/// Use `.row_mean_tr` if you need the result in a column vector instead.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use nalgebra::{Matrix2x3, RowVector3};
|
|
///
|
|
/// let m = Matrix2x3::new(1.0, 2.0, 3.0,
|
|
/// 4.0, 5.0, 6.0);
|
|
/// assert_eq!(m.row_mean(), RowVector3::new(2.5, 3.5, 4.5));
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn row_mean(&self) -> RowOVector<T, C>
|
|
where
|
|
T: Field + SupersetOf<f64>,
|
|
DefaultAllocator: Allocator<T, U1, C>,
|
|
{
|
|
self.compress_rows(|col| col.mean())
|
|
}
|
|
|
|
/// The mean of all the rows of this matrix. The result is transposed and returned as a column vector.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use nalgebra::{Matrix2x3, Vector3};
|
|
///
|
|
/// let m = Matrix2x3::new(1.0, 2.0, 3.0,
|
|
/// 4.0, 5.0, 6.0);
|
|
/// assert_eq!(m.row_mean_tr(), Vector3::new(2.5, 3.5, 4.5));
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn row_mean_tr(&self) -> OVector<T, C>
|
|
where
|
|
T: Field + SupersetOf<f64>,
|
|
DefaultAllocator: Allocator<T, C>,
|
|
{
|
|
self.compress_rows_tr(|col| col.mean())
|
|
}
|
|
|
|
/// The mean of all the columns of this matrix.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use nalgebra::{Matrix2x3, Vector2};
|
|
///
|
|
/// let m = Matrix2x3::new(1.0, 2.0, 3.0,
|
|
/// 4.0, 5.0, 6.0);
|
|
/// assert_eq!(m.column_mean(), Vector2::new(2.0, 5.0));
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn column_mean(&self) -> OVector<T, R>
|
|
where
|
|
T: Field + SupersetOf<f64>,
|
|
DefaultAllocator: Allocator<T, R>,
|
|
{
|
|
let (nrows, ncols) = self.data.shape();
|
|
let denom = T::one() / crate::convert::<_, T>(ncols.value() as f64);
|
|
self.compress_columns(OVector::zeros_generic(nrows, Const::<1>), |out, col| {
|
|
out.axpy(denom.inlined_clone(), &col, T::one())
|
|
})
|
|
}
|
|
}
|