forked from M-Labs/nalgebra
7d99015473
This should semantically be a no-op, but enables refactorings to use non-Copy scalars on a case-by-case basis. Also, the only instance of a `One + Zero` trait bound was changed into a `Zero + One` bound to match the others. The following sed scripts were used in the refactoring (with each clause added to reduce the error count of `cargo check`): ```bash export RELEVANT_SOURCEFILES="$(find src -name '*.rs') $(find examples -name '*.rs')" for f in $RELEVANT_SOURCEFILES; do sed -i 's/N: Scalar,/N: Scalar+Copy,/' $f; done for f in $RELEVANT_SOURCEFILES; do sed -i 's/N: Scalar + Field/N: Scalar + Copy + Field/' $f; done for f in $RELEVANT_SOURCEFILES; do sed -i 's/N: Scalar + Zero/N: Scalar + Copy + Zero/' $f; done for f in $RELEVANT_SOURCEFILES; do sed -i 's/N: Scalar + Closed/N: Scalar + Copy + Closed/' $f; done for f in $RELEVANT_SOURCEFILES; do sed -i 's/N: Scalar + Eq/N: Scalar + Copy + Eq/' $f; done for f in $RELEVANT_SOURCEFILES; do sed -i 's/N: Scalar + PartialOrd/N: Scalar + Copy + PartialOrd/' $f; done for f in $RELEVANT_SOURCEFILES; do sed -i 's/N: *Scalar + Zero/N: Scalar + Copy + Zero/' $f; done for f in $RELEVANT_SOURCEFILES; do sed -i 's/N: Scalar + PartialEq/N: Scalar + Copy + PartialEq/' $f; done for f in $RELEVANT_SOURCEFILES; do sed -i 's/N: Scalar>/N: Scalar+Copy>/' $f; done for f in $RELEVANT_SOURCEFILES; do sed -i 's/N: Scalar + $bound/N: Scalar + Copy + $bound/' $f; done for f in $RELEVANT_SOURCEFILES; do sed -i 's/N: *Scalar + $bound/N: Scalar + Copy + $bound/' $f; done for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\): *Scalar,/N\1: Scalar+Copy,/' $f; done for f in $RELEVANT_SOURCEFILES; do sed -i 's/N: *Scalar + $trait/N: Scalar + Copy + $trait/' $f; done for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\): *Scalar + Superset/N\1: Scalar + Copy + Superset/' $f; done for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\): *Scalar + \([a-zA-Z]*Eq\)/N\1: Scalar + Copy + \2/' $f; done for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar + \([a-zA-Z]*Eq\)/N\1: Scalar + Copy + \2/' $f; done for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar + \(hash::\)/N\1: Scalar + Copy + \2/' $f; done for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar {/N\1: Scalar + Copy {/' $f; done for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar + \(Zero\)/N\1: Scalar + Copy + \2/' $f; done for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar + \(Bounded\)/N\1: Scalar + Copy + \2/' $f; done for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar + \(Lattice\)/N\1: Scalar + Copy + \2/' $f; done for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar + \(Meet\|Join\)/N\1: Scalar + Copy + \2/' $f; done for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar + \(fmt::\)/N\1: Scalar + Copy + \2/' $f; done for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar + \(Ring\)/N\1: Scalar + Copy + \2/' $f; done for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar + \(Hash\)/N\1: Scalar + Copy + \2/' $f; done for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar + \(Send\|Sync\)/N\1: Scalar + Copy + \2/' $f; done for f in $RELEVANT_SOURCEFILES; do sed -i 's/One + Zero/Zero + One/' $f; done for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar + \(Zero\)/N\1: Scalar + Copy + \2/' $f; done for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar + \($marker\)/N\1: Scalar + Copy + \2/' $f; done for f in $RELEVANT_SOURCEFILES; do sed -i 's/N\([0-9]\?\): *Scalar>/N\1: Scalar + Copy>/' $f; done for f in $RELEVANT_SOURCEFILES; do sed -i 's/Scalar+Copy/Scalar + Copy/' $f; done ```
34 lines
872 B
Rust
34 lines
872 B
Rust
extern crate alga;
|
|
extern crate nalgebra as na;
|
|
|
|
use alga::general::{RealField, RingCommutative};
|
|
use na::{Scalar, Vector3};
|
|
|
|
fn print_vector<N: Scalar + Copy>(m: &Vector3<N>) {
|
|
println!("{:?}", m)
|
|
}
|
|
|
|
fn print_squared_norm<N: Scalar + Copy + RingCommutative>(v: &Vector3<N>) {
|
|
// NOTE: alternatively, nalgebra already defines `v.squared_norm()`.
|
|
let sqnorm = v.dot(v);
|
|
println!("{:?}", sqnorm);
|
|
}
|
|
|
|
fn print_norm<N: RealField>(v: &Vector3<N>) {
|
|
// NOTE: alternatively, nalgebra already defines `v.norm()`.
|
|
let norm = v.dot(v).sqrt();
|
|
|
|
// The RealField bound implies that N is Display so we can
|
|
// use "{}" instead of "{:?}" for the format string.
|
|
println!("{}", norm)
|
|
}
|
|
|
|
fn main() {
|
|
let v1 = Vector3::new(1, 2, 3);
|
|
let v2 = Vector3::new(1.0, 2.0, 3.0);
|
|
|
|
print_vector(&v1);
|
|
print_squared_norm(&v1);
|
|
print_norm(&v2);
|
|
}
|