nalgebra/src/base/interpolation.rs
2021-08-04 17:34:25 +02:00

128 lines
3.9 KiB
Rust

use crate::storage::Storage;
use crate::{
Allocator, DefaultAllocator, Dim, OVector, One, RealField, Scalar, Unit, Vector, Zero,
};
use simba::scalar::{ClosedAdd, ClosedMul, ClosedSub};
/// # Interpolation
impl<T: Scalar + Zero + One + ClosedAdd + ClosedSub + ClosedMul, D: Dim, S: Storage<T, D>>
Vector<T, D, S>
{
/// Returns `self * (1.0 - t) + rhs * t`, i.e., the linear blend of the vectors x and y using the scalar value a.
///
/// The value for a is not restricted to the range `[0, 1]`.
///
/// # Examples:
///
/// ```
/// # use nalgebra::Vector3;
/// let x = Vector3::new(1.0, 2.0, 3.0);
/// let y = Vector3::new(10.0, 20.0, 30.0);
/// assert_eq!(x.lerp(&y, 0.1), Vector3::new(1.9, 3.8, 5.7));
/// ```
#[must_use]
pub fn lerp<S2: Storage<T, D>>(&self, rhs: &Vector<T, D, S2>, t: T) -> OVector<T, D>
where
DefaultAllocator: Allocator<T, D>,
{
let mut res = self.clone_owned();
res.axpy(t.clone(), rhs, T::one() - t);
res
}
/// Computes the spherical linear interpolation between two non-zero vectors.
///
/// The result is a unit vector.
///
/// # Examples:
///
/// ```
/// # use nalgebra::{Unit, Vector2};
///
/// let v1 =Vector2::new(1.0, 2.0);
/// let v2 = Vector2::new(2.0, -3.0);
///
/// let v = v1.slerp(&v2, 1.0);
///
/// assert_eq!(v, v2.normalize());
/// ```
#[must_use]
pub fn slerp<S2: Storage<T, D>>(&self, rhs: &Vector<T, D, S2>, t: T) -> OVector<T, D>
where
T: RealField,
DefaultAllocator: Allocator<T, D>,
{
let me = Unit::new_normalize(self.clone_owned());
let rhs = Unit::new_normalize(rhs.clone_owned());
me.slerp(&rhs, t).into_inner()
}
}
/// # Interpolation between two unit vectors
impl<T: RealField, D: Dim, S: Storage<T, D>> Unit<Vector<T, D, S>> {
/// Computes the spherical linear interpolation between two unit vectors.
///
/// # Examples:
///
/// ```
/// # use nalgebra::{Unit, Vector2};
///
/// let v1 = Unit::new_normalize(Vector2::new(1.0, 2.0));
/// let v2 = Unit::new_normalize(Vector2::new(2.0, -3.0));
///
/// let v = v1.slerp(&v2, 1.0);
///
/// assert_eq!(v, v2);
/// ```
#[must_use]
pub fn slerp<S2: Storage<T, D>>(
&self,
rhs: &Unit<Vector<T, D, S2>>,
t: T,
) -> Unit<OVector<T, D>>
where
DefaultAllocator: Allocator<T, D>,
{
// TODO: the result is wrong when self and rhs are collinear with opposite direction.
self.try_slerp(rhs, t, T::default_epsilon())
.unwrap_or_else(|| Unit::new_unchecked(self.clone_owned()))
}
/// Computes the spherical linear interpolation between two unit vectors.
///
/// Returns `None` if the two vectors are almost collinear and with opposite direction
/// (in this case, there is an infinity of possible results).
#[must_use]
pub fn try_slerp<S2: Storage<T, D>>(
&self,
rhs: &Unit<Vector<T, D, S2>>,
t: T,
epsilon: T,
) -> Option<Unit<OVector<T, D>>>
where
DefaultAllocator: Allocator<T, D>,
{
let c_hang = self.dot(rhs);
// self == other
if c_hang >= T::one() {
return Some(Unit::new_unchecked(self.clone_owned()));
}
let hang = c_hang.clone().acos();
let s_hang = (T::one() - c_hang.clone() * c_hang).sqrt();
// TODO: what if s_hang is 0.0 ? The result is not well-defined.
if relative_eq!(s_hang, T::zero(), epsilon = epsilon) {
None
} else {
let ta = ((T::one() - t.clone()) * hang.clone()).sin() / s_hang.clone();
let tb = (t * hang).sin() / s_hang;
let mut res = self.scale(ta);
res.axpy(tb, &**rhs, T::one());
Some(Unit::new_unchecked(res))
}
}
}