nalgebra/src/base/construction.rs
2021-08-04 17:34:25 +02:00

1227 lines
40 KiB
Rust
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#[cfg(all(feature = "alloc", not(feature = "std")))]
use alloc::vec::Vec;
#[cfg(feature = "arbitrary")]
use crate::base::storage::Owned;
#[cfg(feature = "arbitrary")]
use quickcheck::{Arbitrary, Gen};
use num::{Bounded, One, Zero};
#[cfg(feature = "rand-no-std")]
use rand::{
distributions::{Distribution, Standard},
Rng,
};
use std::iter;
use typenum::{self, Cmp, Greater};
use simba::scalar::{ClosedAdd, ClosedMul};
use crate::base::allocator::Allocator;
use crate::base::dimension::{Dim, DimName, Dynamic, ToTypenum};
use crate::base::storage::RawStorage;
use crate::base::{
ArrayStorage, Const, DefaultAllocator, Matrix, OMatrix, OVector, Scalar, Unit, Vector,
};
use crate::UninitMatrix;
use std::mem::MaybeUninit;
impl<T: Scalar, R: Dim, C: Dim> UninitMatrix<T, R, C>
where
DefaultAllocator: Allocator<T, R, C>,
{
/// Builds a matrix with uninitialized elements of type `MaybeUninit<T>`.
#[inline(always)]
pub fn uninit(nrows: R, ncols: C) -> Self {
// SAFETY: this is OK because the dimension automatically match the storage
// because we are building an owned storage.
unsafe {
Self::from_data_statically_unchecked(DefaultAllocator::allocate_uninit(nrows, ncols))
}
}
}
/// # Generic constructors
/// This set of matrix and vector construction functions are all generic
/// with-regard to the matrix dimensions. They all expect to be given
/// the dimension as inputs.
///
/// These functions should only be used when working on dimension-generic code.
impl<T: Scalar, R: Dim, C: Dim> OMatrix<T, R, C>
where
DefaultAllocator: Allocator<T, R, C>,
{
/// Creates a matrix with all its elements set to `elem`.
#[inline]
pub fn from_element_generic(nrows: R, ncols: C, elem: T) -> Self {
let len = nrows.value() * ncols.value();
Self::from_iterator_generic(nrows, ncols, iter::repeat(elem).take(len))
}
/// Creates a matrix with all its elements set to `elem`.
///
/// Same as `from_element_generic`.
#[inline]
pub fn repeat_generic(nrows: R, ncols: C, elem: T) -> Self {
let len = nrows.value() * ncols.value();
Self::from_iterator_generic(nrows, ncols, iter::repeat(elem).take(len))
}
/// Creates a matrix with all its elements set to 0.
#[inline]
pub fn zeros_generic(nrows: R, ncols: C) -> Self
where
T: Zero,
{
Self::from_element_generic(nrows, ncols, T::zero())
}
/// Creates a matrix with all its elements filled by an iterator.
#[inline]
pub fn from_iterator_generic<I>(nrows: R, ncols: C, iter: I) -> Self
where
I: IntoIterator<Item = T>,
{
Self::from_data(DefaultAllocator::allocate_from_iterator(nrows, ncols, iter))
}
/// Creates a matrix with its elements filled with the components provided by a slice in
/// row-major order.
///
/// The order of elements in the slice must follow the usual mathematic writing, i.e.,
/// row-by-row.
#[inline]
pub fn from_row_slice_generic(nrows: R, ncols: C, slice: &[T]) -> Self {
assert!(
slice.len() == nrows.value() * ncols.value(),
"Matrix init. error: the slice did not contain the right number of elements."
);
let mut res = Matrix::uninit(nrows, ncols);
let mut iter = slice.iter();
unsafe {
for i in 0..nrows.value() {
for j in 0..ncols.value() {
*res.get_unchecked_mut((i, j)) = MaybeUninit::new(iter.next().unwrap().clone())
}
}
// SAFETY: the result has been fully initialized above.
res.assume_init()
}
}
/// Creates a matrix with its elements filled with the components provided by a slice. The
/// components must have the same layout as the matrix data storage (i.e. column-major).
#[inline]
pub fn from_column_slice_generic(nrows: R, ncols: C, slice: &[T]) -> Self {
Self::from_iterator_generic(nrows, ncols, slice.iter().cloned())
}
/// Creates a matrix filled with the results of a function applied to each of its component
/// coordinates.
#[inline]
pub fn from_fn_generic<F>(nrows: R, ncols: C, mut f: F) -> Self
where
F: FnMut(usize, usize) -> T,
{
let mut res = Matrix::uninit(nrows, ncols);
unsafe {
for j in 0..ncols.value() {
for i in 0..nrows.value() {
*res.get_unchecked_mut((i, j)) = MaybeUninit::new(f(i, j));
}
}
// SAFETY: the result has been fully initialized above.
res.assume_init()
}
}
/// Creates a new identity matrix.
///
/// If the matrix is not square, the largest square submatrix starting at index `(0, 0)` is set
/// to the identity matrix. All other entries are set to zero.
#[inline]
pub fn identity_generic(nrows: R, ncols: C) -> Self
where
T: Zero + One,
{
Self::from_diagonal_element_generic(nrows, ncols, T::one())
}
/// Creates a new matrix with its diagonal filled with copies of `elt`.
///
/// If the matrix is not square, the largest square submatrix starting at index `(0, 0)` is set
/// to the identity matrix. All other entries are set to zero.
#[inline]
pub fn from_diagonal_element_generic(nrows: R, ncols: C, elt: T) -> Self
where
T: Zero + One,
{
let mut res = Self::zeros_generic(nrows, ncols);
for i in 0..crate::min(nrows.value(), ncols.value()) {
unsafe { *res.get_unchecked_mut((i, i)) = elt.clone() }
}
res
}
/// Creates a new matrix that may be rectangular. The first `elts.len()` diagonal elements are
/// filled with the content of `elts`. Others are set to 0.
///
/// Panics if `elts.len()` is larger than the minimum among `nrows` and `ncols`.
#[inline]
pub fn from_partial_diagonal_generic(nrows: R, ncols: C, elts: &[T]) -> Self
where
T: Zero,
{
let mut res = Self::zeros_generic(nrows, ncols);
assert!(
elts.len() <= crate::min(nrows.value(), ncols.value()),
"Too many diagonal elements provided."
);
for (i, elt) in elts.iter().enumerate() {
unsafe { *res.get_unchecked_mut((i, i)) = elt.clone() }
}
res
}
/// Builds a new matrix from its rows.
///
/// Panics if not enough rows are provided (for statically-sized matrices), or if all rows do
/// not have the same dimensions.
///
/// # Example
/// ```
/// # use nalgebra::{RowVector3, Matrix3};
/// # use std::iter;
///
/// let m = Matrix3::from_rows(&[ RowVector3::new(1.0, 2.0, 3.0), RowVector3::new(4.0, 5.0, 6.0), RowVector3::new(7.0, 8.0, 9.0) ]);
///
/// assert!(m.m11 == 1.0 && m.m12 == 2.0 && m.m13 == 3.0 &&
/// m.m21 == 4.0 && m.m22 == 5.0 && m.m23 == 6.0 &&
/// m.m31 == 7.0 && m.m32 == 8.0 && m.m33 == 9.0);
/// ```
#[inline]
pub fn from_rows<SB>(rows: &[Matrix<T, Const<1>, C, SB>]) -> Self
where
SB: RawStorage<T, Const<1>, C>,
{
assert!(!rows.is_empty(), "At least one row must be given.");
let nrows = R::try_to_usize().unwrap_or_else(|| rows.len());
let ncols = rows[0].len();
assert!(
rows.len() == nrows,
"Invalid number of rows provided to build this matrix."
);
if C::try_to_usize().is_none() {
assert!(
rows.iter().all(|r| r.len() == ncols),
"The provided rows must all have the same dimension."
);
}
// TODO: optimize that.
Self::from_fn_generic(R::from_usize(nrows), C::from_usize(ncols), |i, j| {
rows[i][(0, j)].clone()
})
}
/// Builds a new matrix from its columns.
///
/// Panics if not enough columns are provided (for statically-sized matrices), or if all
/// columns do not have the same dimensions.
///
/// # Example
/// ```
/// # use nalgebra::{Vector3, Matrix3};
/// # use std::iter;
///
/// let m = Matrix3::from_columns(&[ Vector3::new(1.0, 2.0, 3.0), Vector3::new(4.0, 5.0, 6.0), Vector3::new(7.0, 8.0, 9.0) ]);
///
/// assert!(m.m11 == 1.0 && m.m12 == 4.0 && m.m13 == 7.0 &&
/// m.m21 == 2.0 && m.m22 == 5.0 && m.m23 == 8.0 &&
/// m.m31 == 3.0 && m.m32 == 6.0 && m.m33 == 9.0);
/// ```
#[inline]
pub fn from_columns<SB>(columns: &[Vector<T, R, SB>]) -> Self
where
SB: RawStorage<T, R>,
{
assert!(!columns.is_empty(), "At least one column must be given.");
let ncols = C::try_to_usize().unwrap_or_else(|| columns.len());
let nrows = columns[0].len();
assert!(
columns.len() == ncols,
"Invalid number of columns provided to build this matrix."
);
if R::try_to_usize().is_none() {
assert!(
columns.iter().all(|r| r.len() == nrows),
"The columns provided must all have the same dimension."
);
}
// TODO: optimize that.
Self::from_fn_generic(R::from_usize(nrows), C::from_usize(ncols), |i, j| {
columns[j][i].clone()
})
}
/// Creates a matrix filled with random values.
#[inline]
#[cfg(feature = "rand")]
pub fn new_random_generic(nrows: R, ncols: C) -> Self
where
Standard: Distribution<T>,
{
let mut rng = rand::thread_rng();
Self::from_fn_generic(nrows, ncols, |_, _| rng.gen())
}
/// Creates a matrix filled with random values from the given distribution.
#[inline]
#[cfg(feature = "rand-no-std")]
pub fn from_distribution_generic<Distr: Distribution<T> + ?Sized, G: Rng + ?Sized>(
nrows: R,
ncols: C,
distribution: &Distr,
rng: &mut G,
) -> Self {
Self::from_fn_generic(nrows, ncols, |_, _| distribution.sample(rng))
}
/// Creates a matrix backed by a given `Vec`.
///
/// The output matrix is filled column-by-column.
///
/// # Example
/// ```
/// # use nalgebra::{Dynamic, DMatrix, Matrix, Const};
///
/// let vec = vec![0, 1, 2, 3, 4, 5];
/// let vec_ptr = vec.as_ptr();
///
/// let matrix = Matrix::from_vec_generic(Dynamic::new(vec.len()), Const::<1>, vec);
/// let matrix_storage_ptr = matrix.data.as_vec().as_ptr();
///
/// // `matrix` is backed by exactly the same `Vec` as it was constructed from.
/// assert_eq!(matrix_storage_ptr, vec_ptr);
/// ```
#[inline]
#[cfg(any(feature = "std", feature = "alloc"))]
pub fn from_vec_generic(nrows: R, ncols: C, data: Vec<T>) -> Self {
Self::from_iterator_generic(nrows, ncols, data)
}
}
impl<T, D: Dim> OMatrix<T, D, D>
where
T: Scalar,
DefaultAllocator: Allocator<T, D, D>,
{
/// Creates a square matrix with its diagonal set to `diag` and all other entries set to 0.
///
/// # Example
/// ```
/// # use nalgebra::{Vector3, DVector, Matrix3, DMatrix};
/// # use std::iter;
///
/// let m = Matrix3::from_diagonal(&Vector3::new(1.0, 2.0, 3.0));
/// // The two additional arguments represent the matrix dimensions.
/// let dm = DMatrix::from_diagonal(&DVector::from_row_slice(&[1.0, 2.0, 3.0]));
///
/// assert!(m.m11 == 1.0 && m.m12 == 0.0 && m.m13 == 0.0 &&
/// m.m21 == 0.0 && m.m22 == 2.0 && m.m23 == 0.0 &&
/// m.m31 == 0.0 && m.m32 == 0.0 && m.m33 == 3.0);
/// assert!(dm[(0, 0)] == 1.0 && dm[(0, 1)] == 0.0 && dm[(0, 2)] == 0.0 &&
/// dm[(1, 0)] == 0.0 && dm[(1, 1)] == 2.0 && dm[(1, 2)] == 0.0 &&
/// dm[(2, 0)] == 0.0 && dm[(2, 1)] == 0.0 && dm[(2, 2)] == 3.0);
/// ```
#[inline]
pub fn from_diagonal<SB: RawStorage<T, D>>(diag: &Vector<T, D, SB>) -> Self
where
T: Zero,
{
let (dim, _) = diag.shape_generic();
let mut res = Self::zeros_generic(dim, dim);
for i in 0..diag.len() {
unsafe {
*res.get_unchecked_mut((i, i)) = diag.vget_unchecked(i).clone();
}
}
res
}
}
/*
*
* Generate constructors with varying number of arguments, depending on the object type.
*
*/
macro_rules! impl_constructors(
($($Dims: ty),*; $(=> $DimIdent: ident: $DimBound: ident),*; $($gargs: expr),*; $($args: ident),*) => {
/// Creates a matrix or vector with all its elements set to `elem`.
///
/// # Example
/// ```
/// # use nalgebra::{Matrix2x3, Vector3, DVector, DMatrix};
///
/// let v = Vector3::from_element(2.0);
/// // The additional argument represents the vector dimension.
/// let dv = DVector::from_element(3, 2.0);
/// let m = Matrix2x3::from_element(2.0);
/// // The two additional arguments represent the matrix dimensions.
/// let dm = DMatrix::from_element(2, 3, 2.0);
///
/// assert!(v.x == 2.0 && v.y == 2.0 && v.z == 2.0);
/// assert!(dv[0] == 2.0 && dv[1] == 2.0 && dv[2] == 2.0);
/// assert!(m.m11 == 2.0 && m.m12 == 2.0 && m.m13 == 2.0 &&
/// m.m21 == 2.0 && m.m22 == 2.0 && m.m23 == 2.0);
/// assert!(dm[(0, 0)] == 2.0 && dm[(0, 1)] == 2.0 && dm[(0, 2)] == 2.0 &&
/// dm[(1, 0)] == 2.0 && dm[(1, 1)] == 2.0 && dm[(1, 2)] == 2.0);
/// ```
#[inline]
pub fn from_element($($args: usize,)* elem: T) -> Self {
Self::from_element_generic($($gargs, )* elem)
}
/// Creates a matrix or vector with all its elements set to `elem`.
///
/// Same as `.from_element`.
///
/// # Example
/// ```
/// # use nalgebra::{Matrix2x3, Vector3, DVector, DMatrix};
///
/// let v = Vector3::repeat(2.0);
/// // The additional argument represents the vector dimension.
/// let dv = DVector::repeat(3, 2.0);
/// let m = Matrix2x3::repeat(2.0);
/// // The two additional arguments represent the matrix dimensions.
/// let dm = DMatrix::repeat(2, 3, 2.0);
///
/// assert!(v.x == 2.0 && v.y == 2.0 && v.z == 2.0);
/// assert!(dv[0] == 2.0 && dv[1] == 2.0 && dv[2] == 2.0);
/// assert!(m.m11 == 2.0 && m.m12 == 2.0 && m.m13 == 2.0 &&
/// m.m21 == 2.0 && m.m22 == 2.0 && m.m23 == 2.0);
/// assert!(dm[(0, 0)] == 2.0 && dm[(0, 1)] == 2.0 && dm[(0, 2)] == 2.0 &&
/// dm[(1, 0)] == 2.0 && dm[(1, 1)] == 2.0 && dm[(1, 2)] == 2.0);
/// ```
#[inline]
pub fn repeat($($args: usize,)* elem: T) -> Self {
Self::repeat_generic($($gargs, )* elem)
}
/// Creates a matrix or vector with all its elements set to `0`.
///
/// # Example
/// ```
/// # use nalgebra::{Matrix2x3, Vector3, DVector, DMatrix};
///
/// let v = Vector3::<f32>::zeros();
/// // The argument represents the vector dimension.
/// let dv = DVector::<f32>::zeros(3);
/// let m = Matrix2x3::<f32>::zeros();
/// // The two arguments represent the matrix dimensions.
/// let dm = DMatrix::<f32>::zeros(2, 3);
///
/// assert!(v.x == 0.0 && v.y == 0.0 && v.z == 0.0);
/// assert!(dv[0] == 0.0 && dv[1] == 0.0 && dv[2] == 0.0);
/// assert!(m.m11 == 0.0 && m.m12 == 0.0 && m.m13 == 0.0 &&
/// m.m21 == 0.0 && m.m22 == 0.0 && m.m23 == 0.0);
/// assert!(dm[(0, 0)] == 0.0 && dm[(0, 1)] == 0.0 && dm[(0, 2)] == 0.0 &&
/// dm[(1, 0)] == 0.0 && dm[(1, 1)] == 0.0 && dm[(1, 2)] == 0.0);
/// ```
#[inline]
pub fn zeros($($args: usize),*) -> Self
where T: Zero {
Self::zeros_generic($($gargs),*)
}
/// Creates a matrix or vector with all its elements filled by an iterator.
///
/// The output matrix is filled column-by-column.
///
/// # Example
/// ```
/// # use nalgebra::{Matrix2x3, Vector3, DVector, DMatrix};
/// # use std::iter;
///
/// let v = Vector3::from_iterator((0..3).into_iter());
/// // The additional argument represents the vector dimension.
/// let dv = DVector::from_iterator(3, (0..3).into_iter());
/// let m = Matrix2x3::from_iterator((0..6).into_iter());
/// // The two additional arguments represent the matrix dimensions.
/// let dm = DMatrix::from_iterator(2, 3, (0..6).into_iter());
///
/// assert!(v.x == 0 && v.y == 1 && v.z == 2);
/// assert!(dv[0] == 0 && dv[1] == 1 && dv[2] == 2);
/// assert!(m.m11 == 0 && m.m12 == 2 && m.m13 == 4 &&
/// m.m21 == 1 && m.m22 == 3 && m.m23 == 5);
/// assert!(dm[(0, 0)] == 0 && dm[(0, 1)] == 2 && dm[(0, 2)] == 4 &&
/// dm[(1, 0)] == 1 && dm[(1, 1)] == 3 && dm[(1, 2)] == 5);
/// ```
#[inline]
pub fn from_iterator<I>($($args: usize,)* iter: I) -> Self
where I: IntoIterator<Item = T> {
Self::from_iterator_generic($($gargs, )* iter)
}
/// Creates a matrix or vector filled with the results of a function applied to each of its
/// component coordinates.
///
/// # Example
/// ```
/// # use nalgebra::{Matrix2x3, Vector3, DVector, DMatrix};
/// # use std::iter;
///
/// let v = Vector3::from_fn(|i, _| i);
/// // The additional argument represents the vector dimension.
/// let dv = DVector::from_fn(3, |i, _| i);
/// let m = Matrix2x3::from_fn(|i, j| i * 3 + j);
/// // The two additional arguments represent the matrix dimensions.
/// let dm = DMatrix::from_fn(2, 3, |i, j| i * 3 + j);
///
/// assert!(v.x == 0 && v.y == 1 && v.z == 2);
/// assert!(dv[0] == 0 && dv[1] == 1 && dv[2] == 2);
/// assert!(m.m11 == 0 && m.m12 == 1 && m.m13 == 2 &&
/// m.m21 == 3 && m.m22 == 4 && m.m23 == 5);
/// assert!(dm[(0, 0)] == 0 && dm[(0, 1)] == 1 && dm[(0, 2)] == 2 &&
/// dm[(1, 0)] == 3 && dm[(1, 1)] == 4 && dm[(1, 2)] == 5);
/// ```
#[inline]
pub fn from_fn<F>($($args: usize,)* f: F) -> Self
where F: FnMut(usize, usize) -> T {
Self::from_fn_generic($($gargs, )* f)
}
/// Creates an identity matrix. If the matrix is not square, the largest square
/// submatrix (starting at the first row and column) is set to the identity while all
/// other entries are set to zero.
///
/// # Example
/// ```
/// # use nalgebra::{Matrix2x3, DMatrix};
/// # use std::iter;
///
/// let m = Matrix2x3::<f32>::identity();
/// // The two additional arguments represent the matrix dimensions.
/// let dm = DMatrix::<f32>::identity(2, 3);
///
/// assert!(m.m11 == 1.0 && m.m12 == 0.0 && m.m13 == 0.0 &&
/// m.m21 == 0.0 && m.m22 == 1.0 && m.m23 == 0.0);
/// assert!(dm[(0, 0)] == 1.0 && dm[(0, 1)] == 0.0 && dm[(0, 2)] == 0.0 &&
/// dm[(1, 0)] == 0.0 && dm[(1, 1)] == 1.0 && dm[(1, 2)] == 0.0);
/// ```
#[inline]
pub fn identity($($args: usize,)*) -> Self
where T: Zero + One {
Self::identity_generic($($gargs),* )
}
/// Creates a matrix filled with its diagonal filled with `elt` and all other
/// components set to zero.
///
/// # Example
/// ```
/// # use nalgebra::{Matrix2x3, DMatrix};
/// # use std::iter;
///
/// let m = Matrix2x3::from_diagonal_element(5.0);
/// // The two additional arguments represent the matrix dimensions.
/// let dm = DMatrix::from_diagonal_element(2, 3, 5.0);
///
/// assert!(m.m11 == 5.0 && m.m12 == 0.0 && m.m13 == 0.0 &&
/// m.m21 == 0.0 && m.m22 == 5.0 && m.m23 == 0.0);
/// assert!(dm[(0, 0)] == 5.0 && dm[(0, 1)] == 0.0 && dm[(0, 2)] == 0.0 &&
/// dm[(1, 0)] == 0.0 && dm[(1, 1)] == 5.0 && dm[(1, 2)] == 0.0);
/// ```
#[inline]
pub fn from_diagonal_element($($args: usize,)* elt: T) -> Self
where T: Zero + One {
Self::from_diagonal_element_generic($($gargs, )* elt)
}
/// Creates a new matrix that may be rectangular. The first `elts.len()` diagonal
/// elements are filled with the content of `elts`. Others are set to 0.
///
/// Panics if `elts.len()` is larger than the minimum among `nrows` and `ncols`.
///
/// # Example
/// ```
/// # use nalgebra::{Matrix3, DMatrix};
/// # use std::iter;
///
/// let m = Matrix3::from_partial_diagonal(&[1.0, 2.0]);
/// // The two additional arguments represent the matrix dimensions.
/// let dm = DMatrix::from_partial_diagonal(3, 3, &[1.0, 2.0]);
///
/// assert!(m.m11 == 1.0 && m.m12 == 0.0 && m.m13 == 0.0 &&
/// m.m21 == 0.0 && m.m22 == 2.0 && m.m23 == 0.0 &&
/// m.m31 == 0.0 && m.m32 == 0.0 && m.m33 == 0.0);
/// assert!(dm[(0, 0)] == 1.0 && dm[(0, 1)] == 0.0 && dm[(0, 2)] == 0.0 &&
/// dm[(1, 0)] == 0.0 && dm[(1, 1)] == 2.0 && dm[(1, 2)] == 0.0 &&
/// dm[(2, 0)] == 0.0 && dm[(2, 1)] == 0.0 && dm[(2, 2)] == 0.0);
/// ```
#[inline]
pub fn from_partial_diagonal($($args: usize,)* elts: &[T]) -> Self
where T: Zero {
Self::from_partial_diagonal_generic($($gargs, )* elts)
}
/// Creates a matrix or vector filled with random values from the given distribution.
#[inline]
#[cfg(feature = "rand-no-std")]
pub fn from_distribution<Distr: Distribution<T> + ?Sized, G: Rng + ?Sized>(
$($args: usize,)*
distribution: &Distr,
rng: &mut G,
) -> Self {
Self::from_distribution_generic($($gargs, )* distribution, rng)
}
/// Creates a matrix filled with random values.
#[inline]
#[cfg(feature = "rand")]
pub fn new_random($($args: usize),*) -> Self
where Standard: Distribution<T> {
Self::new_random_generic($($gargs),*)
}
}
);
/// # Constructors of statically-sized vectors or statically-sized matrices
impl<T: Scalar, R: DimName, C: DimName> OMatrix<T, R, C>
where
DefaultAllocator: Allocator<T, R, C>,
{
// TODO: this is not very pretty. We could find a better call syntax.
impl_constructors!(R, C; // Arguments for Matrix<T, ..., S>
=> R: DimName, => C: DimName; // Type parameters for impl<T, ..., S>
R::name(), C::name(); // Arguments for `_generic` constructors.
); // Arguments for non-generic constructors.
}
/// # Constructors of matrices with a dynamic number of columns
impl<T: Scalar, R: DimName> OMatrix<T, R, Dynamic>
where
DefaultAllocator: Allocator<T, R, Dynamic>,
{
impl_constructors!(R, Dynamic;
=> R: DimName;
R::name(), Dynamic::new(ncols);
ncols);
}
/// # Constructors of dynamic vectors and matrices with a dynamic number of rows
impl<T: Scalar, C: DimName> OMatrix<T, Dynamic, C>
where
DefaultAllocator: Allocator<T, Dynamic, C>,
{
impl_constructors!(Dynamic, C;
=> C: DimName;
Dynamic::new(nrows), C::name();
nrows);
}
/// # Constructors of fully dynamic matrices
impl<T: Scalar> OMatrix<T, Dynamic, Dynamic>
where
DefaultAllocator: Allocator<T, Dynamic, Dynamic>,
{
impl_constructors!(Dynamic, Dynamic;
;
Dynamic::new(nrows), Dynamic::new(ncols);
nrows, ncols);
}
/*
*
* Constructors that don't necessarily require all dimensions
* to be specified when one dimension is already known.
*
*/
macro_rules! impl_constructors_from_data(
($data: ident; $($Dims: ty),*; $(=> $DimIdent: ident: $DimBound: ident),*; $($gargs: expr),*; $($args: ident),*) => {
impl<T: Scalar, $($DimIdent: $DimBound, )*> OMatrix<T $(, $Dims)*>
where DefaultAllocator: Allocator<T $(, $Dims)*> {
/// Creates a matrix with its elements filled with the components provided by a slice
/// in row-major order.
///
/// The order of elements in the slice must follow the usual mathematic writing, i.e.,
/// row-by-row.
///
/// # Example
/// ```
/// # use nalgebra::{Matrix2x3, Vector3, DVector, DMatrix};
/// # use std::iter;
///
/// let v = Vector3::from_row_slice(&[0, 1, 2]);
/// // The additional argument represents the vector dimension.
/// let dv = DVector::from_row_slice(&[0, 1, 2]);
/// let m = Matrix2x3::from_row_slice(&[0, 1, 2, 3, 4, 5]);
/// // The two additional arguments represent the matrix dimensions.
/// let dm = DMatrix::from_row_slice(2, 3, &[0, 1, 2, 3, 4, 5]);
///
/// assert!(v.x == 0 && v.y == 1 && v.z == 2);
/// assert!(dv[0] == 0 && dv[1] == 1 && dv[2] == 2);
/// assert!(m.m11 == 0 && m.m12 == 1 && m.m13 == 2 &&
/// m.m21 == 3 && m.m22 == 4 && m.m23 == 5);
/// assert!(dm[(0, 0)] == 0 && dm[(0, 1)] == 1 && dm[(0, 2)] == 2 &&
/// dm[(1, 0)] == 3 && dm[(1, 1)] == 4 && dm[(1, 2)] == 5);
/// ```
#[inline]
pub fn from_row_slice($($args: usize,)* $data: &[T]) -> Self {
Self::from_row_slice_generic($($gargs, )* $data)
}
/// Creates a matrix with its elements filled with the components provided by a slice
/// in column-major order.
///
/// # Example
/// ```
/// # use nalgebra::{Matrix2x3, Vector3, DVector, DMatrix};
/// # use std::iter;
///
/// let v = Vector3::from_column_slice(&[0, 1, 2]);
/// // The additional argument represents the vector dimension.
/// let dv = DVector::from_column_slice(&[0, 1, 2]);
/// let m = Matrix2x3::from_column_slice(&[0, 1, 2, 3, 4, 5]);
/// // The two additional arguments represent the matrix dimensions.
/// let dm = DMatrix::from_column_slice(2, 3, &[0, 1, 2, 3, 4, 5]);
///
/// assert!(v.x == 0 && v.y == 1 && v.z == 2);
/// assert!(dv[0] == 0 && dv[1] == 1 && dv[2] == 2);
/// assert!(m.m11 == 0 && m.m12 == 2 && m.m13 == 4 &&
/// m.m21 == 1 && m.m22 == 3 && m.m23 == 5);
/// assert!(dm[(0, 0)] == 0 && dm[(0, 1)] == 2 && dm[(0, 2)] == 4 &&
/// dm[(1, 0)] == 1 && dm[(1, 1)] == 3 && dm[(1, 2)] == 5);
/// ```
#[inline]
pub fn from_column_slice($($args: usize,)* $data: &[T]) -> Self {
Self::from_column_slice_generic($($gargs, )* $data)
}
/// Creates a matrix backed by a given `Vec`.
///
/// The output matrix is filled column-by-column.
///
/// # Example
/// ```
/// # use nalgebra::{DMatrix, Matrix2x3};
///
/// let m = Matrix2x3::from_vec(vec![0, 1, 2, 3, 4, 5]);
///
/// assert!(m.m11 == 0 && m.m12 == 2 && m.m13 == 4 &&
/// m.m21 == 1 && m.m22 == 3 && m.m23 == 5);
///
///
/// // The two additional arguments represent the matrix dimensions.
/// let dm = DMatrix::from_vec(2, 3, vec![0, 1, 2, 3, 4, 5]);
///
/// assert!(dm[(0, 0)] == 0 && dm[(0, 1)] == 2 && dm[(0, 2)] == 4 &&
/// dm[(1, 0)] == 1 && dm[(1, 1)] == 3 && dm[(1, 2)] == 5);
/// ```
#[inline]
#[cfg(any(feature = "std", feature = "alloc"))]
pub fn from_vec($($args: usize,)* $data: Vec<T>) -> Self {
Self::from_vec_generic($($gargs, )* $data)
}
}
}
);
// TODO: this is not very pretty. We could find a better call syntax.
impl_constructors_from_data!(data; R, C; // Arguments for Matrix<T, ..., S>
=> R: DimName, => C: DimName; // Type parameters for impl<T, ..., S>
R::name(), C::name(); // Arguments for `_generic` constructors.
); // Arguments for non-generic constructors.
impl_constructors_from_data!(data; R, Dynamic;
=> R: DimName;
R::name(), Dynamic::new(data.len() / R::dim());
);
impl_constructors_from_data!(data; Dynamic, C;
=> C: DimName;
Dynamic::new(data.len() / C::dim()), C::name();
);
impl_constructors_from_data!(data; Dynamic, Dynamic;
;
Dynamic::new(nrows), Dynamic::new(ncols);
nrows, ncols);
/*
*
* Zero, One, Rand traits.
*
*/
impl<T, R: DimName, C: DimName> Zero for OMatrix<T, R, C>
where
T: Scalar + Zero + ClosedAdd,
DefaultAllocator: Allocator<T, R, C>,
{
#[inline]
fn zero() -> Self {
Self::from_element(T::zero())
}
#[inline]
fn is_zero(&self) -> bool {
self.iter().all(|e| e.is_zero())
}
}
impl<T, D: DimName> One for OMatrix<T, D, D>
where
T: Scalar + Zero + One + ClosedMul + ClosedAdd,
DefaultAllocator: Allocator<T, D, D>,
{
#[inline]
fn one() -> Self {
Self::identity()
}
}
impl<T, R: DimName, C: DimName> Bounded for OMatrix<T, R, C>
where
T: Scalar + Bounded,
DefaultAllocator: Allocator<T, R, C>,
{
#[inline]
fn max_value() -> Self {
Self::from_element(T::max_value())
}
#[inline]
fn min_value() -> Self {
Self::from_element(T::min_value())
}
}
#[cfg(feature = "rand-no-std")]
impl<T: Scalar, R: Dim, C: Dim> Distribution<OMatrix<T, R, C>> for Standard
where
DefaultAllocator: Allocator<T, R, C>,
Standard: Distribution<T>,
{
#[inline]
fn sample<G: Rng + ?Sized>(&self, rng: &mut G) -> OMatrix<T, R, C> {
let nrows = R::try_to_usize().unwrap_or_else(|| rng.gen_range(0..10));
let ncols = C::try_to_usize().unwrap_or_else(|| rng.gen_range(0..10));
OMatrix::from_fn_generic(R::from_usize(nrows), C::from_usize(ncols), |_, _| rng.gen())
}
}
#[cfg(feature = "arbitrary")]
impl<T, R, C> Arbitrary for OMatrix<T, R, C>
where
R: Dim,
C: Dim,
T: Scalar + Arbitrary + Send,
DefaultAllocator: Allocator<T, R, C>,
Owned<T, R, C>: Clone + Send,
{
#[inline]
fn arbitrary(g: &mut Gen) -> Self {
let nrows = R::try_to_usize().unwrap_or(usize::arbitrary(g) % 10);
let ncols = C::try_to_usize().unwrap_or(usize::arbitrary(g) % 10);
Self::from_fn_generic(R::from_usize(nrows), C::from_usize(ncols), |_, _| {
T::arbitrary(g)
})
}
}
// TODO(specialization): faster impls possible for D≤4 (see rand_distr::{UnitCircle, UnitSphere})
#[cfg(feature = "rand")]
impl<T: crate::RealField, D: DimName> Distribution<Unit<OVector<T, D>>> for Standard
where
DefaultAllocator: Allocator<T, D>,
rand_distr::StandardNormal: Distribution<T>,
{
/// Generate a uniformly distributed random unit vector.
#[inline]
fn sample<G: Rng + ?Sized>(&self, rng: &mut G) -> Unit<OVector<T, D>> {
Unit::new_normalize(OVector::from_distribution_generic(
D::name(),
Const::<1>,
&rand_distr::StandardNormal,
rng,
))
}
}
/*
*
* Constructors for small matrices and vectors.
*
*/
macro_rules! transpose_array(
[$($a: ident),*;] => {
[$([$a]),*]
};
[$($a: ident),*; $($b: ident),*;] => {
[$([$a, $b]),*]
};
[$($a: ident),*; $($b: ident),*; $($c: ident),*;] => {
[$([$a, $b, $c]),*]
};
[$($a: ident),*; $($b: ident),*; $($c: ident),*; $($d: ident),*;] => {
[$([$a, $b, $c, $d]),*]
};
[$($a: ident),*; $($b: ident),*; $($c: ident),*; $($d: ident),*; $($e: ident),*;] => {
[$([$a, $b, $c, $d, $e]),*]
};
[$($a: ident),*; $($b: ident),*; $($c: ident),*; $($d: ident),*; $($e: ident),*; $($f: ident),*;] => {
[$([$a, $b, $c, $d, $e, $f]),*]
};
);
macro_rules! componentwise_constructors_impl(
($($R: expr, $C: expr, [$($($args: ident),*);*] $(;)*)*) => {$(
impl<T> Matrix<T, Const<$R>, Const<$C>, ArrayStorage<T, $R, $C>> {
/// Initializes this matrix from its components.
#[inline]
#[allow(clippy::too_many_arguments)]
pub const fn new($($($args: T),*),*) -> Self {
unsafe {
Self::from_data_statically_unchecked(
ArrayStorage(
transpose_array![
$(
$($args),*
;)*
]
)
)
}
}
}
)*}
);
componentwise_constructors_impl!(
/*
* Square matrices 1 .. 6.
*/
2, 2, [m11, m12;
m21, m22];
3, 3, [m11, m12, m13;
m21, m22, m23;
m31, m32, m33];
4, 4, [m11, m12, m13, m14;
m21, m22, m23, m24;
m31, m32, m33, m34;
m41, m42, m43, m44];
5, 5, [m11, m12, m13, m14, m15;
m21, m22, m23, m24, m25;
m31, m32, m33, m34, m35;
m41, m42, m43, m44, m45;
m51, m52, m53, m54, m55];
6, 6, [m11, m12, m13, m14, m15, m16;
m21, m22, m23, m24, m25, m26;
m31, m32, m33, m34, m35, m36;
m41, m42, m43, m44, m45, m46;
m51, m52, m53, m54, m55, m56;
m61, m62, m63, m64, m65, m66];
/*
* Rectangular matrices with 2 rows.
*/
2, 3, [m11, m12, m13;
m21, m22, m23];
2, 4, [m11, m12, m13, m14;
m21, m22, m23, m24];
2, 5, [m11, m12, m13, m14, m15;
m21, m22, m23, m24, m25];
2, 6, [m11, m12, m13, m14, m15, m16;
m21, m22, m23, m24, m25, m26];
/*
* Rectangular matrices with 3 rows.
*/
3, 2, [m11, m12;
m21, m22;
m31, m32];
3, 4, [m11, m12, m13, m14;
m21, m22, m23, m24;
m31, m32, m33, m34];
3, 5, [m11, m12, m13, m14, m15;
m21, m22, m23, m24, m25;
m31, m32, m33, m34, m35];
3, 6, [m11, m12, m13, m14, m15, m16;
m21, m22, m23, m24, m25, m26;
m31, m32, m33, m34, m35, m36];
/*
* Rectangular matrices with 4 rows.
*/
4, 2, [m11, m12;
m21, m22;
m31, m32;
m41, m42];
4, 3, [m11, m12, m13;
m21, m22, m23;
m31, m32, m33;
m41, m42, m43];
4, 5, [m11, m12, m13, m14, m15;
m21, m22, m23, m24, m25;
m31, m32, m33, m34, m35;
m41, m42, m43, m44, m45];
4, 6, [m11, m12, m13, m14, m15, m16;
m21, m22, m23, m24, m25, m26;
m31, m32, m33, m34, m35, m36;
m41, m42, m43, m44, m45, m46];
/*
* Rectangular matrices with 5 rows.
*/
5, 2, [m11, m12;
m21, m22;
m31, m32;
m41, m42;
m51, m52];
5, 3, [m11, m12, m13;
m21, m22, m23;
m31, m32, m33;
m41, m42, m43;
m51, m52, m53];
5, 4, [m11, m12, m13, m14;
m21, m22, m23, m24;
m31, m32, m33, m34;
m41, m42, m43, m44;
m51, m52, m53, m54];
5, 6, [m11, m12, m13, m14, m15, m16;
m21, m22, m23, m24, m25, m26;
m31, m32, m33, m34, m35, m36;
m41, m42, m43, m44, m45, m46;
m51, m52, m53, m54, m55, m56];
/*
* Rectangular matrices with 6 rows.
*/
6, 2, [m11, m12;
m21, m22;
m31, m32;
m41, m42;
m51, m52;
m61, m62];
6, 3, [m11, m12, m13;
m21, m22, m23;
m31, m32, m33;
m41, m42, m43;
m51, m52, m53;
m61, m62, m63];
6, 4, [m11, m12, m13, m14;
m21, m22, m23, m24;
m31, m32, m33, m34;
m41, m42, m43, m44;
m51, m52, m53, m54;
m61, m62, m63, m64];
6, 5, [m11, m12, m13, m14, m15;
m21, m22, m23, m24, m25;
m31, m32, m33, m34, m35;
m41, m42, m43, m44, m45;
m51, m52, m53, m54, m55;
m61, m62, m63, m64, m65];
/*
* Row vectors 1 .. 6.
*/
1, 1, [x];
1, 2, [x, y];
1, 3, [x, y, z];
1, 4, [x, y, z, w];
1, 5, [x, y, z, w, a];
1, 6, [x, y, z, w, a, b];
/*
* Column vectors 1 .. 6.
*/
2, 1, [x; y];
3, 1, [x; y; z];
4, 1, [x; y; z; w];
5, 1, [x; y; z; w; a];
6, 1, [x; y; z; w; a; b];
);
/*
*
* Axis constructors.
*
*/
impl<T, R: DimName> OVector<T, R>
where
R: ToTypenum,
T: Scalar + Zero + One,
DefaultAllocator: Allocator<T, R>,
{
/// The column vector with `val` as its i-th component.
#[inline]
pub fn ith(i: usize, val: T) -> Self {
let mut res = Self::zeros();
res[i] = val;
res
}
/// The column unit vector with `T::one()` as its i-th component.
#[inline]
pub fn ith_axis(i: usize) -> Unit<Self> {
Unit::new_unchecked(Self::ith(i, T::one()))
}
/// The column vector with a 1 as its first component, and zero elsewhere.
#[inline]
pub fn x() -> Self
where
R::Typenum: Cmp<typenum::U0, Output = Greater>,
{
let mut res = Self::zeros();
unsafe {
*res.vget_unchecked_mut(0) = T::one();
}
res
}
/// The column vector with a 1 as its second component, and zero elsewhere.
#[inline]
pub fn y() -> Self
where
R::Typenum: Cmp<typenum::U1, Output = Greater>,
{
let mut res = Self::zeros();
unsafe {
*res.vget_unchecked_mut(1) = T::one();
}
res
}
/// The column vector with a 1 as its third component, and zero elsewhere.
#[inline]
pub fn z() -> Self
where
R::Typenum: Cmp<typenum::U2, Output = Greater>,
{
let mut res = Self::zeros();
unsafe {
*res.vget_unchecked_mut(2) = T::one();
}
res
}
/// The column vector with a 1 as its fourth component, and zero elsewhere.
#[inline]
pub fn w() -> Self
where
R::Typenum: Cmp<typenum::U3, Output = Greater>,
{
let mut res = Self::zeros();
unsafe {
*res.vget_unchecked_mut(3) = T::one();
}
res
}
/// The column vector with a 1 as its fifth component, and zero elsewhere.
#[inline]
pub fn a() -> Self
where
R::Typenum: Cmp<typenum::U4, Output = Greater>,
{
let mut res = Self::zeros();
unsafe {
*res.vget_unchecked_mut(4) = T::one();
}
res
}
/// The column vector with a 1 as its sixth component, and zero elsewhere.
#[inline]
pub fn b() -> Self
where
R::Typenum: Cmp<typenum::U5, Output = Greater>,
{
let mut res = Self::zeros();
unsafe {
*res.vget_unchecked_mut(5) = T::one();
}
res
}
/// The unit column vector with a 1 as its first component, and zero elsewhere.
#[inline]
pub fn x_axis() -> Unit<Self>
where
R::Typenum: Cmp<typenum::U0, Output = Greater>,
{
Unit::new_unchecked(Self::x())
}
/// The unit column vector with a 1 as its second component, and zero elsewhere.
#[inline]
pub fn y_axis() -> Unit<Self>
where
R::Typenum: Cmp<typenum::U1, Output = Greater>,
{
Unit::new_unchecked(Self::y())
}
/// The unit column vector with a 1 as its third component, and zero elsewhere.
#[inline]
pub fn z_axis() -> Unit<Self>
where
R::Typenum: Cmp<typenum::U2, Output = Greater>,
{
Unit::new_unchecked(Self::z())
}
/// The unit column vector with a 1 as its fourth component, and zero elsewhere.
#[inline]
pub fn w_axis() -> Unit<Self>
where
R::Typenum: Cmp<typenum::U3, Output = Greater>,
{
Unit::new_unchecked(Self::w())
}
/// The unit column vector with a 1 as its fifth component, and zero elsewhere.
#[inline]
pub fn a_axis() -> Unit<Self>
where
R::Typenum: Cmp<typenum::U4, Output = Greater>,
{
Unit::new_unchecked(Self::a())
}
/// The unit column vector with a 1 as its sixth component, and zero elsewhere.
#[inline]
pub fn b_axis() -> Unit<Self>
where
R::Typenum: Cmp<typenum::U5, Output = Greater>,
{
Unit::new_unchecked(Self::b())
}
}