nalgebra/src/linalg/schur.rs

580 lines
19 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Serialize};
use approx::AbsDiffEq;
use alga::general::{Complex, Real};
use num_complex::Complex as NumComplex;
use std::cmp;
use allocator::Allocator;
use base::dimension::{Dim, DimDiff, DimSub, Dynamic, U1, U2, U3};
use base::storage::Storage;
use base::{DefaultAllocator, MatrixN, SquareMatrix, Unit, Vector2, Vector3, VectorN};
use constraint::{DimEq, ShapeConstraint};
use geometry::{Reflection, UnitComplex};
use linalg::householder;
use linalg::Hessenberg;
use linalg::givens::GivensRotation;
/// Real Schur decomposition of a square matrix.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
serialize = "DefaultAllocator: Allocator<N, D, D>,
MatrixN<N, D>: Serialize"
))
)]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
deserialize = "DefaultAllocator: Allocator<N, D, D>,
MatrixN<N, D>: Deserialize<'de>"
))
)]
#[derive(Clone, Debug)]
pub struct RealSchur<N: Complex, D: Dim>
where DefaultAllocator: Allocator<N, D, D>
{
q: MatrixN<N, D>,
t: MatrixN<N, D>,
}
impl<N: Complex, D: Dim> Copy for RealSchur<N, D>
where
DefaultAllocator: Allocator<N, D, D>,
MatrixN<N, D>: Copy,
{}
impl<N: Complex, D: Dim> RealSchur<N, D>
where
D: DimSub<U1>, // For Hessenberg.
ShapeConstraint: DimEq<Dynamic, DimDiff<D, U1>>, // For Hessenberg.
DefaultAllocator: Allocator<N, D, DimDiff<D, U1>>
+ Allocator<N, DimDiff<D, U1>>
+ Allocator<N, D, D>
+ Allocator<N, D>,
{
/// Computes the Schur decomposition of a square matrix.
pub fn new(m: MatrixN<N, D>) -> Self {
Self::try_new(m, N::Real::default_epsilon(), 0).unwrap()
}
/// Attempts to compute the Schur decomposition of a square matrix.
///
/// If only eigenvalues are needed, it is more efficient to call the matrix method
/// `.eigenvalues()` instead.
///
/// # Arguments
///
/// * `eps` tolerance used to determine when a value converged to 0.
/// * `max_niter` maximum total number of iterations performed by the algorithm. If this
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
/// continues indefinitely until convergence.
pub fn try_new(m: MatrixN<N, D>, eps: N::Real, max_niter: usize) -> Option<Self> {
let mut work = unsafe { VectorN::new_uninitialized_generic(m.data.shape().0, U1) };
Self::do_decompose(m, &mut work, eps, max_niter, true).map(|(q, t)| RealSchur {
q: q.unwrap(),
t: t,
})
}
fn do_decompose(
mut m: MatrixN<N, D>,
work: &mut VectorN<N, D>,
eps: N::Real,
max_niter: usize,
compute_q: bool,
) -> Option<(Option<MatrixN<N, D>>, MatrixN<N, D>)>
{
assert!(
m.is_square(),
"Unable to compute the eigenvectors and eigenvalues of a non-square matrix."
);
let dim = m.data.shape().0;
if dim.value() == 0 {
let vecs = Some(MatrixN::from_element_generic(dim, dim, N::zero()));
let vals = MatrixN::from_element_generic(dim, dim, N::zero());
return Some((vecs, vals));
} else if dim.value() == 1 {
if compute_q {
let q = MatrixN::from_element_generic(dim, dim, N::one());
return Some((Some(q), m));
} else {
return Some((None, m));
}
}
// Specialization would make this easier.
else if dim.value() == 2 {
return decompose_2x2(m, compute_q);
}
let amax_m = m.camax();
m.unscale_mut(amax_m);
let hess = Hessenberg::new_with_workspace(m, work);
let mut q;
let mut t;
if compute_q {
// FIXME: could we work without unpacking? Using only the internal representation of
// hessenberg decomposition.
let (vecs, vals) = hess.unpack();
q = Some(vecs);
t = vals;
} else {
q = None;
t = hess.unpack_h()
}
// Implicit double-shift QR method.
let mut niter = 0;
let (mut start, mut end) = Self::delimit_subproblem(&mut t, eps, dim.value() - 1);
while end != start {
let subdim = end - start + 1;
if subdim > 2 {
let m = end - 1;
let n = end;
let h11 = t[(start + 0, start + 0)];
let h12 = t[(start + 0, start + 1)];
let h21 = t[(start + 1, start + 0)];
let h22 = t[(start + 1, start + 1)];
let h32 = t[(start + 2, start + 1)];
let hnn = t[(n, n)];
let hmm = t[(m, m)];
let hnm = t[(n, m)];
let hmn = t[(m, n)];
let tra = hnn + hmm;
let det = hnn * hmm - hnm * hmn;
let mut axis = Vector3::new(
h11 * h11 + h12 * h21 - tra * h11 + det,
h21 * (h11 + h22 - tra),
h21 * h32,
);
for k in start..n - 1 {
let (norm, not_zero) = householder::reflection_axis_mut(&mut axis);
if not_zero {
if k > start {
t[(k + 0, k - 1)] = norm;
t[(k + 1, k - 1)] = N::zero();
t[(k + 2, k - 1)] = N::zero();
}
let refl = Reflection::new(Unit::new_unchecked(axis), N::zero());
{
let krows = cmp::min(k + 4, end + 1);
let mut work = work.rows_mut(0, krows);
refl.reflect(
&mut t
.generic_slice_mut((k, k), (U3, Dynamic::new(dim.value() - k))),
);
refl.reflect_rows(
&mut t.generic_slice_mut((0, k), (Dynamic::new(krows), U3)),
&mut work,
);
}
if let Some(ref mut q) = q {
refl.reflect_rows(&mut q.generic_slice_mut((0, k), (dim, U3)), work);
}
}
axis.x = t[(k + 1, k)];
axis.y = t[(k + 2, k)];
if k < n - 2 {
axis.z = t[(k + 3, k)];
}
}
let mut axis = Vector2::new(axis.x, axis.y);
let (norm, not_zero) = householder::reflection_axis_mut(&mut axis);
if not_zero {
let refl = Reflection::new(Unit::new_unchecked(axis), N::zero());
t[(m, m - 1)] = norm;
t[(n, m - 1)] = N::zero();
{
let mut work = work.rows_mut(0, end + 1);
refl.reflect(
&mut t.generic_slice_mut((m, m), (U2, Dynamic::new(dim.value() - m))),
);
refl.reflect_rows(
&mut t.generic_slice_mut((0, m), (Dynamic::new(end + 1), U2)),
&mut work,
);
}
if let Some(ref mut q) = q {
refl.reflect_rows(&mut q.generic_slice_mut((0, m), (dim, U2)), work);
}
}
} else {
// Decouple the 2x2 block if it has real eigenvalues.
if let Some(rot) = compute_2x2_basis(&t.fixed_slice::<U2, U2>(start, start)) {
let inv_rot = rot.inverse();
inv_rot.rotate(&mut t.generic_slice_mut(
(start, start),
(U2, Dynamic::new(dim.value() - start)),
));
rot.rotate_rows(
&mut t.generic_slice_mut((0, start), (Dynamic::new(end + 1), U2)),
);
t[(end, start)] = N::zero();
if let Some(ref mut q) = q {
rot.rotate_rows(&mut q.generic_slice_mut((0, start), (dim, U2)));
}
}
// Check if we reached the beginning of the matrix.
if end > 2 {
end -= 2;
} else {
break;
}
}
let sub = Self::delimit_subproblem(&mut t, eps, end);
start = sub.0;
end = sub.1;
niter += 1;
if niter == max_niter {
return None;
}
}
t.scale_mut(amax_m);
Some((q, t))
}
/// Computes the eigenvalues of the decomposed matrix.
fn do_eigenvalues(t: &MatrixN<N, D>, out: &mut VectorN<N, D>) -> bool {
let dim = t.nrows();
let mut m = 0;
while m < dim - 1 {
let n = m + 1;
if t[(n, m)].is_zero() {
out[m] = t[(m, m)];
m += 1;
} else {
// Complex eigenvalue.
return false;
}
}
if m == dim - 1 {
out[m] = t[(m, m)];
}
true
}
/// Computes the complex eigenvalues of the decomposed matrix.
fn do_complex_eigenvalues(t: &MatrixN<N, D>, out: &mut VectorN<NumComplex<N>, D>)
where N: Real,
DefaultAllocator: Allocator<NumComplex<N>, D> {
let dim = t.nrows();
let mut m = 0;
while m < dim - 1 {
let n = m + 1;
if t[(n, m)].is_zero() {
out[m] = NumComplex::new(t[(m, m)], N::zero());
m += 1;
} else {
// Solve the 2x2 eigenvalue subproblem.
let hmm = t[(m, m)];
let hnm = t[(n, m)];
let hmn = t[(m, n)];
let hnn = t[(n, n)];
let tra = hnn + hmm;
let det = hnn * hmm - hnm * hmn;
let discr = tra * tra * ::convert(0.25) - det;
// All 2x2 blocks have negative discriminant because we already decoupled those
// with positive eigenvalues..
let sqrt_discr = NumComplex::new(N::zero(), (-discr).sqrt());
out[m] = NumComplex::new(tra * ::convert(0.5), N::zero()) + sqrt_discr;
out[m + 1] = NumComplex::new(tra * ::convert(0.5), N::zero()) - sqrt_discr;
m += 2;
}
}
if m == dim - 1 {
out[m] = NumComplex::new(t[(m, m)], N::zero());
}
}
fn delimit_subproblem(t: &mut MatrixN<N, D>, eps: N::Real, end: usize) -> (usize, usize)
where
D: DimSub<U1>,
DefaultAllocator: Allocator<N, DimDiff<D, U1>>,
{
let mut n = end;
while n > 0 {
let m = n - 1;
if t[(n, m)].modulus() <= eps * (t[(n, n)].modulus() + t[(m, m)].modulus()) {
t[(n, m)] = N::zero();
} else {
break;
}
n -= 1;
}
if n == 0 {
return (0, 0);
}
let mut new_start = n - 1;
while new_start > 0 {
let m = new_start - 1;
let off_diag = t[(new_start, m)];
if off_diag.is_zero()
|| off_diag.modulus() <= eps * (t[(new_start, new_start)].modulus() + t[(m, m)].modulus())
{
t[(new_start, m)] = N::zero();
break;
}
new_start -= 1;
}
(new_start, n)
}
/// Retrieves the unitary matrix `Q` and the upper-quasitriangular matrix `T` such that the
/// decomposed matrix equals `Q * T * Q.transpose()`.
pub fn unpack(self) -> (MatrixN<N, D>, MatrixN<N, D>) {
(self.q, self.t)
}
/// Computes the real eigenvalues of the decomposed matrix.
///
/// Return `None` if some eigenvalues are complex.
pub fn eigenvalues(&self) -> Option<VectorN<N, D>> {
let mut out = unsafe { VectorN::new_uninitialized_generic(self.t.data.shape().0, U1) };
if Self::do_eigenvalues(&self.t, &mut out) {
Some(out)
} else {
None
}
}
/// Computes the complex eigenvalues of the decomposed matrix.
pub fn complex_eigenvalues(&self) -> VectorN<NumComplex<N>, D>
where N: Real,
DefaultAllocator: Allocator<NumComplex<N>, D> {
let mut out = unsafe { VectorN::new_uninitialized_generic(self.t.data.shape().0, U1) };
Self::do_complex_eigenvalues(&self.t, &mut out);
out
}
}
fn decompose_2x2<N: Complex, D: Dim>(
mut m: MatrixN<N, D>,
compute_q: bool,
) -> Option<(Option<MatrixN<N, D>>, MatrixN<N, D>)>
where
DefaultAllocator: Allocator<N, D, D>,
{
let dim = m.data.shape().0;
let mut q = None;
match compute_2x2_basis(&m.fixed_slice::<U2, U2>(0, 0)) {
Some(rot) => {
let mut m = m.fixed_slice_mut::<U2, U2>(0, 0);
let inv_rot = rot.inverse();
inv_rot.rotate(&mut m);
rot.rotate_rows(&mut m);
if compute_q {
// XXX: we have to build the matrix manually because
// rot.to_rotation_matrix().unwrap() causes an ICE.
q = Some(MatrixN::from_column_slice_generic(
dim,
dim,
&[rot.c(), rot.s(), -rot.s().conjugate(), rot.c().conjugate()],
));
}
}
None => {
if compute_q {
q = Some(MatrixN::identity_generic(dim, dim));
}
}
};
Some((q, m))
}
fn compute_2x2_eigvals<N: Complex, S: Storage<N, U2, U2>>(
m: &SquareMatrix<N, U2, S>,
) -> Option<(N, N)> {
// Solve the 2x2 eigenvalue subproblem.
let h00 = m[(0, 0)];
let h10 = m[(1, 0)];
let h01 = m[(0, 1)];
let h11 = m[(1, 1)];
// NOTE: this discriminant computation is mor stable than the
// one based on the trace and determinant: 0.25 * tra * tra - det
// because et ensures positiveness for symmetric matrices.
let val = (h00 - h11) * ::convert(0.5);
let discr = h10 * h01 + val * val;
discr.try_sqrt().map(|sqrt_discr| {
let half_tra = (h00 + h11) * ::convert(0.5);
(half_tra + sqrt_discr, half_tra - sqrt_discr)
})
}
// Computes the 2x2 transformation that upper-triangulates a 2x2 matrix with real eigenvalues.
/// Computes the singular vectors for a 2x2 matrix.
///
/// Returns `None` if the matrix has complex eigenvalues, or is upper-triangular. In both case,
/// the basis is the identity.
fn compute_2x2_basis<N: Complex, S: Storage<N, U2, U2>>(
m: &SquareMatrix<N, U2, S>,
) -> Option<GivensRotation<N>> {
let h10 = m[(1, 0)];
if h10.is_zero() {
return None;
}
if let Some((eigval1, eigval2)) = compute_2x2_eigvals(m) {
let x1 = m[(1, 1)] - eigval1;
let x2 = m[(1, 1)] - eigval2;
// NOTE: Choose the one that yields a larger x component.
// This is necessary for numerical stability of the normalization of the complex
// number.
if x1.modulus() > x2.modulus() {
Some(GivensRotation::new(x1, -h10))
} else {
Some(GivensRotation::new(x2, -h10))
}
} else {
None
}
}
impl<N: Complex, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S>
where
D: DimSub<U1>, // For Hessenberg.
ShapeConstraint: DimEq<Dynamic, DimDiff<D, U1>>, // For Hessenberg.
DefaultAllocator: Allocator<N, D, DimDiff<D, U1>>
+ Allocator<N, DimDiff<D, U1>>
+ Allocator<N, D, D>
+ Allocator<N, D>,
{
/// Computes the Schur decomposition of a square matrix.
pub fn real_schur(self) -> RealSchur<N, D> {
RealSchur::new(self.into_owned())
}
/// Attempts to compute the Schur decomposition of a square matrix.
///
/// If only eigenvalues are needed, it is more efficient to call the matrix method
/// `.eigenvalues()` instead.
///
/// # Arguments
///
/// * `eps` tolerance used to determine when a value converged to 0.
/// * `max_niter` maximum total number of iterations performed by the algorithm. If this
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
/// continues indefinitely until convergence.
pub fn try_real_schur(self, eps: N::Real, max_niter: usize) -> Option<RealSchur<N, D>> {
RealSchur::try_new(self.into_owned(), eps, max_niter)
}
/// Computes the eigenvalues of this matrix.
pub fn eigenvalues(&self) -> Option<VectorN<N, D>> {
assert!(
self.is_square(),
"Unable to compute eigenvalues of a non-square matrix."
);
let mut work = unsafe { VectorN::new_uninitialized_generic(self.data.shape().0, U1) };
// Special case for 2x2 matrices.
if self.nrows() == 2 {
// FIXME: can we avoid this slicing
// (which is needed here just to transform D to U2)?
let me = self.fixed_slice::<U2, U2>(0, 0);
return match compute_2x2_eigvals(&me) {
Some((a, b)) => {
work[0] = a;
work[1] = b;
Some(work)
}
None => None,
};
}
// FIXME: add balancing?
let schur = RealSchur::do_decompose(
self.clone_owned(),
&mut work,
N::Real::default_epsilon(),
0,
false,
)
.unwrap();
if RealSchur::do_eigenvalues(&schur.1, &mut work) {
Some(work)
} else {
None
}
}
/// Computes the eigenvalues of this matrix.
pub fn complex_eigenvalues(&self) -> VectorN<NumComplex<N>, D>
// FIXME: add balancing?
where N: Real,
DefaultAllocator: Allocator<NumComplex<N>, D> {
let dim = self.data.shape().0;
let mut work = unsafe { VectorN::new_uninitialized_generic(dim, U1) };
let schur = RealSchur::do_decompose(
self.clone_owned(),
&mut work,
N::default_epsilon(),
0,
false,
)
.unwrap();
let mut eig = unsafe { VectorN::new_uninitialized_generic(dim, U1) };
RealSchur::do_complex_eigenvalues(&schur.1, &mut eig);
eig
}
}