forked from M-Labs/nalgebra
305 lines
9.4 KiB
Rust
305 lines
9.4 KiB
Rust
use alga::general::{ClosedAdd, ClosedMul};
|
||
use num::{One, Zero};
|
||
use std::ops::{Add, Mul};
|
||
|
||
use crate::allocator::Allocator;
|
||
use crate::constraint::{AreMultipliable, DimEq, ShapeConstraint};
|
||
use crate::sparse::{CsMatrix, CsStorage, CsStorageMut, CsVector};
|
||
use crate::storage::StorageMut;
|
||
use crate::{DefaultAllocator, Dim, Scalar, Vector, VectorN, U1};
|
||
|
||
impl<N: Scalar, R: Dim, C: Dim, S: CsStorage<N, R, C>> CsMatrix<N, R, C, S> {
|
||
fn scatter<R2: Dim, C2: Dim>(
|
||
&self,
|
||
j: usize,
|
||
beta: N,
|
||
timestamps: &mut [usize],
|
||
timestamp: usize,
|
||
workspace: &mut [N],
|
||
mut nz: usize,
|
||
res: &mut CsMatrix<N, R2, C2>,
|
||
) -> usize
|
||
where
|
||
N: ClosedAdd + ClosedMul,
|
||
DefaultAllocator: Allocator<usize, C2>,
|
||
{
|
||
for (i, val) in self.data.column_entries(j) {
|
||
if timestamps[i] < timestamp {
|
||
timestamps[i] = timestamp;
|
||
res.data.i[nz] = i;
|
||
nz += 1;
|
||
workspace[i] = val * beta.inlined_clone();
|
||
} else {
|
||
workspace[i] += val * beta.inlined_clone();
|
||
}
|
||
}
|
||
|
||
nz
|
||
}
|
||
}
|
||
|
||
/*
|
||
impl<N: Scalar, R, S> CsVector<N, R, S> {
|
||
pub fn axpy(&mut self, alpha: N, x: CsVector<N, R, S>, beta: N) {
|
||
// First, compute the number of non-zero entries.
|
||
let mut nnzero = 0;
|
||
|
||
// Allocate a size large enough.
|
||
self.data.set_column_len(0, nnzero);
|
||
|
||
// Fill with the axpy.
|
||
let mut i = self.len();
|
||
let mut j = x.len();
|
||
let mut k = nnzero - 1;
|
||
let mut rid1 = self.data.row_index(0, i - 1);
|
||
let mut rid2 = x.data.row_index(0, j - 1);
|
||
|
||
while k > 0 {
|
||
if rid1 == rid2 {
|
||
self.data.set_row_index(0, k, rid1);
|
||
self[k] = alpha * x[j] + beta * self[k];
|
||
i -= 1;
|
||
j -= 1;
|
||
} else if rid1 < rid2 {
|
||
self.data.set_row_index(0, k, rid1);
|
||
self[k] = beta * self[i];
|
||
i -= 1;
|
||
} else {
|
||
self.data.set_row_index(0, k, rid2);
|
||
self[k] = alpha * x[j];
|
||
j -= 1;
|
||
}
|
||
|
||
k -= 1;
|
||
}
|
||
}
|
||
}
|
||
*/
|
||
|
||
impl<N: Scalar + Zero + ClosedAdd + ClosedMul, D: Dim, S: StorageMut<N, D>> Vector<N, D, S> {
|
||
/// Perform a sparse axpy operation: `self = alpha * x + beta * self` operation.
|
||
pub fn axpy_cs<D2: Dim, S2>(&mut self, alpha: N, x: &CsVector<N, D2, S2>, beta: N)
|
||
where
|
||
S2: CsStorage<N, D2>,
|
||
ShapeConstraint: DimEq<D, D2>,
|
||
{
|
||
if beta.is_zero() {
|
||
for i in 0..x.len() {
|
||
unsafe {
|
||
let k = x.data.row_index_unchecked(i);
|
||
let y = self.vget_unchecked_mut(k);
|
||
*y = alpha.inlined_clone() * x.data.get_value_unchecked(i).inlined_clone();
|
||
}
|
||
}
|
||
} else {
|
||
// Needed to be sure even components not present on `x` are multiplied.
|
||
*self *= beta.inlined_clone();
|
||
|
||
for i in 0..x.len() {
|
||
unsafe {
|
||
let k = x.data.row_index_unchecked(i);
|
||
let y = self.vget_unchecked_mut(k);
|
||
*y += alpha.inlined_clone() * x.data.get_value_unchecked(i).inlined_clone();
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/*
|
||
pub fn gemv_sparse<R2: Dim, C2: Dim, S2>(&mut self, alpha: N, a: &CsMatrix<N, R2, C2, S2>, x: &DVector<N>, beta: N)
|
||
where
|
||
S2: CsStorage<N, R2, C2> {
|
||
let col2 = a.column(0);
|
||
let val = unsafe { *x.vget_unchecked(0) };
|
||
self.axpy_sparse(alpha * val, &col2, beta);
|
||
|
||
for j in 1..ncols2 {
|
||
let col2 = a.column(j);
|
||
let val = unsafe { *x.vget_unchecked(j) };
|
||
|
||
self.axpy_sparse(alpha * val, &col2, N::one());
|
||
}
|
||
}
|
||
*/
|
||
}
|
||
|
||
impl<'a, 'b, N, R1, R2, C1, C2, S1, S2> Mul<&'b CsMatrix<N, R2, C2, S2>>
|
||
for &'a CsMatrix<N, R1, C1, S1>
|
||
where
|
||
N: Scalar + ClosedAdd + ClosedMul + Zero,
|
||
R1: Dim,
|
||
C1: Dim,
|
||
R2: Dim,
|
||
C2: Dim,
|
||
S1: CsStorage<N, R1, C1>,
|
||
S2: CsStorage<N, R2, C2>,
|
||
ShapeConstraint: AreMultipliable<R1, C1, R2, C2>,
|
||
DefaultAllocator: Allocator<usize, C2> + Allocator<usize, R1> + Allocator<N, R1>,
|
||
{
|
||
type Output = CsMatrix<N, R1, C2>;
|
||
|
||
fn mul(self, rhs: &'b CsMatrix<N, R2, C2, S2>) -> Self::Output {
|
||
let (nrows1, ncols1) = self.data.shape();
|
||
let (nrows2, ncols2) = rhs.data.shape();
|
||
assert_eq!(
|
||
ncols1.value(),
|
||
nrows2.value(),
|
||
"Mismatched dimensions for matrix multiplication."
|
||
);
|
||
|
||
let mut res = CsMatrix::new_uninitialized_generic(nrows1, ncols2, self.len() + rhs.len());
|
||
let mut workspace = VectorN::<N, R1>::zeros_generic(nrows1, U1);
|
||
let mut nz = 0;
|
||
|
||
for j in 0..ncols2.value() {
|
||
res.data.p[j] = nz;
|
||
let new_size_bound = nz + nrows1.value();
|
||
res.data.i.resize(new_size_bound, 0);
|
||
res.data.vals.resize(new_size_bound, N::zero());
|
||
|
||
for (i, beta) in rhs.data.column_entries(j) {
|
||
for (k, val) in self.data.column_entries(i) {
|
||
workspace[k] += val.inlined_clone() * beta.inlined_clone();
|
||
}
|
||
}
|
||
|
||
for (i, val) in workspace.as_mut_slice().iter_mut().enumerate() {
|
||
if !val.is_zero() {
|
||
res.data.i[nz] = i;
|
||
res.data.vals[nz] = val.inlined_clone();
|
||
*val = N::zero();
|
||
nz += 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
// NOTE: the following has a lower complexity, but is slower in many cases, likely because
|
||
// of branching inside of the inner loop.
|
||
//
|
||
// let mut res = CsMatrix::new_uninitialized_generic(nrows1, ncols2, self.len() + rhs.len());
|
||
// let mut timestamps = VectorN::zeros_generic(nrows1, U1);
|
||
// let mut workspace = unsafe { VectorN::new_uninitialized_generic(nrows1, U1) };
|
||
// let mut nz = 0;
|
||
//
|
||
// for j in 0..ncols2.value() {
|
||
// res.data.p[j] = nz;
|
||
// let new_size_bound = nz + nrows1.value();
|
||
// res.data.i.resize(new_size_bound, 0);
|
||
// res.data.vals.resize(new_size_bound, N::zero());
|
||
//
|
||
// for (i, val) in rhs.data.column_entries(j) {
|
||
// nz = self.scatter(
|
||
// i,
|
||
// val,
|
||
// timestamps.as_mut_slice(),
|
||
// j + 1,
|
||
// workspace.as_mut_slice(),
|
||
// nz,
|
||
// &mut res,
|
||
// );
|
||
// }
|
||
//
|
||
// // Keep the output sorted.
|
||
// let range = res.data.p[j]..nz;
|
||
// res.data.i[range.clone()].sort();
|
||
//
|
||
// for p in range {
|
||
// res.data.vals[p] = workspace[res.data.i[p]]
|
||
// }
|
||
// }
|
||
|
||
res.data.i.truncate(nz);
|
||
res.data.i.shrink_to_fit();
|
||
res.data.vals.truncate(nz);
|
||
res.data.vals.shrink_to_fit();
|
||
res
|
||
}
|
||
}
|
||
|
||
impl<'a, 'b, N, R1, R2, C1, C2, S1, S2> Add<&'b CsMatrix<N, R2, C2, S2>>
|
||
for &'a CsMatrix<N, R1, C1, S1>
|
||
where
|
||
N: Scalar + ClosedAdd + ClosedMul + One,
|
||
R1: Dim,
|
||
C1: Dim,
|
||
R2: Dim,
|
||
C2: Dim,
|
||
S1: CsStorage<N, R1, C1>,
|
||
S2: CsStorage<N, R2, C2>,
|
||
ShapeConstraint: DimEq<R1, R2> + DimEq<C1, C2>,
|
||
DefaultAllocator: Allocator<usize, C2> + Allocator<usize, R1> + Allocator<N, R1>,
|
||
{
|
||
type Output = CsMatrix<N, R1, C2>;
|
||
|
||
fn add(self, rhs: &'b CsMatrix<N, R2, C2, S2>) -> Self::Output {
|
||
let (nrows1, ncols1) = self.data.shape();
|
||
let (nrows2, ncols2) = rhs.data.shape();
|
||
assert_eq!(
|
||
(nrows1.value(), ncols1.value()),
|
||
(nrows2.value(), ncols2.value()),
|
||
"Mismatched dimensions for matrix sum."
|
||
);
|
||
|
||
let mut res = CsMatrix::new_uninitialized_generic(nrows1, ncols2, self.len() + rhs.len());
|
||
let mut timestamps = VectorN::zeros_generic(nrows1, U1);
|
||
let mut workspace = unsafe { VectorN::new_uninitialized_generic(nrows1, U1) };
|
||
let mut nz = 0;
|
||
|
||
for j in 0..ncols2.value() {
|
||
res.data.p[j] = nz;
|
||
|
||
nz = self.scatter(
|
||
j,
|
||
N::one(),
|
||
timestamps.as_mut_slice(),
|
||
j + 1,
|
||
workspace.as_mut_slice(),
|
||
nz,
|
||
&mut res,
|
||
);
|
||
|
||
nz = rhs.scatter(
|
||
j,
|
||
N::one(),
|
||
timestamps.as_mut_slice(),
|
||
j + 1,
|
||
workspace.as_mut_slice(),
|
||
nz,
|
||
&mut res,
|
||
);
|
||
|
||
// Keep the output sorted.
|
||
let range = res.data.p[j]..nz;
|
||
res.data.i[range.clone()].sort();
|
||
|
||
for p in range {
|
||
res.data.vals[p] = workspace[res.data.i[p]].inlined_clone()
|
||
}
|
||
}
|
||
|
||
res.data.i.truncate(nz);
|
||
res.data.i.shrink_to_fit();
|
||
res.data.vals.truncate(nz);
|
||
res.data.vals.shrink_to_fit();
|
||
res
|
||
}
|
||
}
|
||
|
||
impl<'a, 'b, N, R, C, S> Mul<N> for CsMatrix<N, R, C, S>
|
||
where
|
||
N: Scalar + ClosedAdd + ClosedMul + Zero,
|
||
R: Dim,
|
||
C: Dim,
|
||
S: CsStorageMut<N, R, C>,
|
||
{
|
||
type Output = Self;
|
||
|
||
fn mul(mut self, rhs: N) -> Self::Output {
|
||
for e in self.values_mut() {
|
||
*e *= rhs.inlined_clone()
|
||
}
|
||
|
||
self
|
||
}
|
||
}
|