forked from M-Labs/nalgebra
7a083d50f7
It's possible that some particularly bad inputs cause severe loss of significance in the triangular solves. This is exacerbated by the fact that the way we test the (residual) error is also prone to loss of significance, so that the error measure itself is problematic. We could maybe improve this in the future by using arbitrary- precision arithmetic to remove some sources of error and testing against appropriate bounds.
1181 lines
45 KiB
Rust
1181 lines
45 KiB
Rust
use crate::common::{csc_strategy, csr_strategy, PROPTEST_MATRIX_DIM, PROPTEST_MAX_NNZ, PROPTEST_I32_VALUE_STRATEGY, non_zero_i32_value_strategy, value_strategy};
|
|
use nalgebra_sparse::ops::serial::{spmm_csr_dense, spmm_csc_dense, spadd_pattern, spadd_csr_prealloc, spadd_csc_prealloc, spmm_csr_prealloc, spmm_csc_prealloc, spsolve_csc_lower_triangular, spmm_csr_pattern};
|
|
use nalgebra_sparse::ops::{Op};
|
|
use nalgebra_sparse::csr::CsrMatrix;
|
|
use nalgebra_sparse::csc::CscMatrix;
|
|
use nalgebra_sparse::proptest::{csc, csr, sparsity_pattern};
|
|
use nalgebra_sparse::pattern::SparsityPattern;
|
|
|
|
use nalgebra::{DMatrix, Scalar, DMatrixSliceMut, DMatrixSlice};
|
|
use nalgebra::proptest::{matrix, vector};
|
|
|
|
use proptest::prelude::*;
|
|
|
|
use matrixcompare::prop_assert_matrix_eq;
|
|
|
|
use std::panic::catch_unwind;
|
|
|
|
/// Represents the sparsity pattern of a CSR matrix as a dense matrix with 0/1
|
|
fn dense_csr_pattern(pattern: &SparsityPattern) -> DMatrix<i32> {
|
|
let boolean_csr = CsrMatrix::try_from_pattern_and_values(
|
|
pattern.clone(),
|
|
vec![1; pattern.nnz()])
|
|
.unwrap();
|
|
DMatrix::from(&boolean_csr)
|
|
}
|
|
|
|
/// Represents the sparsity pattern of a CSC matrix as a dense matrix with 0/1
|
|
fn dense_csc_pattern(pattern: &SparsityPattern) -> DMatrix<i32> {
|
|
let boolean_csc = CscMatrix::try_from_pattern_and_values(
|
|
pattern.clone(),
|
|
vec![1; pattern.nnz()])
|
|
.unwrap();
|
|
DMatrix::from(&boolean_csc)
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct SpmmCsrDenseArgs<T: Scalar> {
|
|
c: DMatrix<T>,
|
|
beta: T,
|
|
alpha: T,
|
|
a: Op<CsrMatrix<T>>,
|
|
b: Op<DMatrix<T>>,
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct SpmmCscDenseArgs<T: Scalar> {
|
|
c: DMatrix<T>,
|
|
beta: T,
|
|
alpha: T,
|
|
a: Op<CscMatrix<T>>,
|
|
b: Op<DMatrix<T>>,
|
|
}
|
|
|
|
/// Returns matrices C, A and B with compatible dimensions such that it can be used
|
|
/// in an `spmm` operation `C = beta * C + alpha * trans(A) * trans(B)`.
|
|
fn spmm_csr_dense_args_strategy() -> impl Strategy<Value=SpmmCsrDenseArgs<i32>> {
|
|
let max_nnz = PROPTEST_MAX_NNZ;
|
|
let value_strategy = PROPTEST_I32_VALUE_STRATEGY;
|
|
let c_rows = PROPTEST_MATRIX_DIM;
|
|
let c_cols = PROPTEST_MATRIX_DIM;
|
|
let common_dim = PROPTEST_MATRIX_DIM;
|
|
let trans_strategy = trans_strategy();
|
|
let c_matrix_strategy = matrix(value_strategy.clone(), c_rows, c_cols);
|
|
|
|
(c_matrix_strategy, common_dim, trans_strategy.clone(), trans_strategy.clone())
|
|
.prop_flat_map(move |(c, common_dim, trans_a, trans_b)| {
|
|
let a_shape =
|
|
if trans_a { (common_dim, c.nrows()) }
|
|
else { (c.nrows(), common_dim) };
|
|
let b_shape =
|
|
if trans_b { (c.ncols(), common_dim) }
|
|
else { (common_dim, c.ncols()) };
|
|
let a = csr(value_strategy.clone(), a_shape.0, a_shape.1, max_nnz);
|
|
let b = matrix(value_strategy.clone(), b_shape.0, b_shape.1);
|
|
|
|
// We use the same values for alpha, beta parameters as for matrix elements
|
|
let alpha = value_strategy.clone();
|
|
let beta = value_strategy.clone();
|
|
|
|
(Just(c), beta, alpha, Just(trans_a), a, Just(trans_b), b)
|
|
}).prop_map(|(c, beta, alpha, trans_a, a, trans_b, b)| {
|
|
SpmmCsrDenseArgs {
|
|
c,
|
|
beta,
|
|
alpha,
|
|
a: if trans_a { Op::Transpose(a) } else { Op::NoOp(a) },
|
|
b: if trans_b { Op::Transpose(b) } else { Op::NoOp(b) },
|
|
}
|
|
})
|
|
}
|
|
|
|
/// Returns matrices C, A and B with compatible dimensions such that it can be used
|
|
/// in an `spmm` operation `C = beta * C + alpha * trans(A) * trans(B)`.
|
|
fn spmm_csc_dense_args_strategy() -> impl Strategy<Value=SpmmCscDenseArgs<i32>> {
|
|
spmm_csr_dense_args_strategy()
|
|
.prop_map(|args| {
|
|
SpmmCscDenseArgs {
|
|
c: args.c,
|
|
beta: args.beta,
|
|
alpha: args.alpha,
|
|
a: args.a.map_same_op(|a| CscMatrix::from(&a)),
|
|
b: args.b
|
|
}
|
|
})
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct SpaddCsrArgs<T> {
|
|
c: CsrMatrix<T>,
|
|
beta: T,
|
|
alpha: T,
|
|
a: Op<CsrMatrix<T>>,
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct SpaddCscArgs<T> {
|
|
c: CscMatrix<T>,
|
|
beta: T,
|
|
alpha: T,
|
|
a: Op<CscMatrix<T>>,
|
|
}
|
|
|
|
fn spadd_csr_prealloc_args_strategy() -> impl Strategy<Value=SpaddCsrArgs<i32>> {
|
|
let value_strategy = PROPTEST_I32_VALUE_STRATEGY;
|
|
|
|
spadd_pattern_strategy()
|
|
.prop_flat_map(move |(a_pattern, b_pattern)| {
|
|
let c_pattern = spadd_pattern(&a_pattern, &b_pattern);
|
|
|
|
let a_values = vec![value_strategy.clone(); a_pattern.nnz()];
|
|
let c_values = vec![value_strategy.clone(); c_pattern.nnz()];
|
|
let alpha = value_strategy.clone();
|
|
let beta = value_strategy.clone();
|
|
(Just(c_pattern), Just(a_pattern), c_values, a_values, alpha, beta, trans_strategy())
|
|
}).prop_map(|(c_pattern, a_pattern, c_values, a_values, alpha, beta, trans_a)| {
|
|
let c = CsrMatrix::try_from_pattern_and_values(c_pattern, c_values).unwrap();
|
|
let a = CsrMatrix::try_from_pattern_and_values(a_pattern, a_values).unwrap();
|
|
|
|
let a = if trans_a { Op::Transpose(a.transpose()) } else { Op::NoOp(a) };
|
|
SpaddCsrArgs { c, beta, alpha, a }
|
|
})
|
|
}
|
|
|
|
fn spadd_csc_prealloc_args_strategy() -> impl Strategy<Value=SpaddCscArgs<i32>> {
|
|
spadd_csr_prealloc_args_strategy()
|
|
.prop_map(|args| SpaddCscArgs {
|
|
c: CscMatrix::from(&args.c),
|
|
beta: args.beta,
|
|
alpha: args.alpha,
|
|
a: args.a.map_same_op(|a| CscMatrix::from(&a))
|
|
})
|
|
}
|
|
|
|
fn dense_strategy() -> impl Strategy<Value=DMatrix<i32>> {
|
|
matrix(PROPTEST_I32_VALUE_STRATEGY, PROPTEST_MATRIX_DIM, PROPTEST_MATRIX_DIM)
|
|
}
|
|
|
|
fn trans_strategy() -> impl Strategy<Value=bool> + Clone {
|
|
proptest::bool::ANY
|
|
}
|
|
|
|
/// Wraps the values of the given strategy in `Op`, producing both transposed and non-transposed
|
|
/// values.
|
|
fn op_strategy<S: Strategy>(strategy: S) -> impl Strategy<Value=Op<S::Value>> {
|
|
let is_transposed = proptest::bool::ANY;
|
|
(strategy, is_transposed)
|
|
.prop_map(|(obj, is_trans)| if is_trans {
|
|
Op::Transpose(obj)
|
|
} else {
|
|
Op::NoOp(obj)
|
|
})
|
|
}
|
|
|
|
fn pattern_strategy() -> impl Strategy<Value=SparsityPattern> {
|
|
sparsity_pattern(PROPTEST_MATRIX_DIM, PROPTEST_MATRIX_DIM, PROPTEST_MAX_NNZ)
|
|
}
|
|
|
|
/// Constructs pairs (a, b) where a and b have the same dimensions
|
|
fn spadd_pattern_strategy() -> impl Strategy<Value=(SparsityPattern, SparsityPattern)> {
|
|
pattern_strategy()
|
|
.prop_flat_map(|a| {
|
|
let b = sparsity_pattern(a.major_dim(), a.minor_dim(), PROPTEST_MAX_NNZ);
|
|
(Just(a), b)
|
|
})
|
|
}
|
|
|
|
/// Constructs pairs (a, b) where a and b have compatible dimensions for a matrix product
|
|
fn spmm_csr_pattern_strategy() -> impl Strategy<Value=(SparsityPattern, SparsityPattern)> {
|
|
pattern_strategy()
|
|
.prop_flat_map(|a| {
|
|
let b = sparsity_pattern(a.minor_dim(), PROPTEST_MATRIX_DIM, PROPTEST_MAX_NNZ);
|
|
(Just(a), b)
|
|
})
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct SpmmCsrArgs<T> {
|
|
c: CsrMatrix<T>,
|
|
beta: T,
|
|
alpha: T,
|
|
a: Op<CsrMatrix<T>>,
|
|
b: Op<CsrMatrix<T>>,
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct SpmmCscArgs<T> {
|
|
c: CscMatrix<T>,
|
|
beta: T,
|
|
alpha: T,
|
|
a: Op<CscMatrix<T>>,
|
|
b: Op<CscMatrix<T>>,
|
|
}
|
|
|
|
fn spmm_csr_prealloc_args_strategy() -> impl Strategy<Value=SpmmCsrArgs<i32>> {
|
|
spmm_csr_pattern_strategy()
|
|
.prop_flat_map(|(a_pattern, b_pattern)| {
|
|
let a_values = vec![PROPTEST_I32_VALUE_STRATEGY; a_pattern.nnz()];
|
|
let b_values = vec![PROPTEST_I32_VALUE_STRATEGY; b_pattern.nnz()];
|
|
let c_pattern = spmm_csr_pattern(&a_pattern, &b_pattern);
|
|
let c_values = vec![PROPTEST_I32_VALUE_STRATEGY; c_pattern.nnz()];
|
|
let a = a_values.prop_map(move |values|
|
|
CsrMatrix::try_from_pattern_and_values(a_pattern.clone(), values).unwrap());
|
|
let b = b_values.prop_map(move |values|
|
|
CsrMatrix::try_from_pattern_and_values(b_pattern.clone(), values).unwrap());
|
|
let c = c_values.prop_map(move |values|
|
|
CsrMatrix::try_from_pattern_and_values(c_pattern.clone(), values).unwrap());
|
|
let alpha = PROPTEST_I32_VALUE_STRATEGY;
|
|
let beta = PROPTEST_I32_VALUE_STRATEGY;
|
|
(c, beta, alpha, trans_strategy(), a, trans_strategy(), b)
|
|
})
|
|
.prop_map(|(c, beta, alpha, trans_a, a, trans_b, b)| {
|
|
SpmmCsrArgs::<i32> {
|
|
c,
|
|
beta,
|
|
alpha,
|
|
a: if trans_a { Op::Transpose(a.transpose()) } else { Op::NoOp(a) },
|
|
b: if trans_b { Op::Transpose(b.transpose()) } else { Op::NoOp(b) }
|
|
}
|
|
})
|
|
}
|
|
|
|
fn spmm_csc_prealloc_args_strategy() -> impl Strategy<Value=SpmmCscArgs<i32>> {
|
|
// Note: Converting from CSR is simple, but might be significantly slower than
|
|
// writing a common implementation that can be shared between CSR and CSC args
|
|
spmm_csr_prealloc_args_strategy()
|
|
.prop_map(|args| {
|
|
SpmmCscArgs {
|
|
c: CscMatrix::from(&args.c),
|
|
beta: args.beta,
|
|
alpha: args.alpha,
|
|
a: args.a.map_same_op(|a| CscMatrix::from(&a)),
|
|
b: args.b.map_same_op(|b| CscMatrix::from(&b))
|
|
}
|
|
})
|
|
}
|
|
|
|
fn csc_invertible_diagonal() -> impl Strategy<Value=CscMatrix<f64>> {
|
|
let non_zero_values = value_strategy::<f64>()
|
|
.prop_filter("Only non-zeros values accepted", |x| x != &0.0);
|
|
|
|
vector(non_zero_values, PROPTEST_MATRIX_DIM)
|
|
.prop_map(|d| {
|
|
let mut matrix = CscMatrix::identity(d.len());
|
|
matrix.values_mut().clone_from_slice(&d.as_slice());
|
|
matrix
|
|
})
|
|
}
|
|
|
|
fn csc_square_with_non_zero_diagonals() -> impl Strategy<Value=CscMatrix<f64>> {
|
|
csc_invertible_diagonal()
|
|
.prop_flat_map(|d| {
|
|
csc(value_strategy::<f64>(), d.nrows(), d.nrows(), PROPTEST_MAX_NNZ)
|
|
.prop_map(move |mut c| {
|
|
for (i, j, v) in c.triplet_iter_mut() {
|
|
if i == j {
|
|
*v = 0.0;
|
|
}
|
|
}
|
|
|
|
// Return the sum of a matrix with zero diagonals and an invertible diagonal
|
|
// matrix
|
|
c + &d
|
|
})
|
|
})
|
|
}
|
|
|
|
/// Helper function to help us call dense GEMM with our `Op` type
|
|
fn dense_gemm<'a>(beta: i32,
|
|
c: impl Into<DMatrixSliceMut<'a, i32>>,
|
|
alpha: i32,
|
|
a: Op<impl Into<DMatrixSlice<'a, i32>>>,
|
|
b: Op<impl Into<DMatrixSlice<'a, i32>>>)
|
|
{
|
|
let mut c = c.into();
|
|
let a = a.convert();
|
|
let b = b.convert();
|
|
|
|
use Op::{NoOp, Transpose};
|
|
match (a, b) {
|
|
(NoOp(a), NoOp(b)) => c.gemm(alpha, &a, &b, beta),
|
|
(Transpose(a), NoOp(b)) => c.gemm(alpha, &a.transpose(), &b, beta),
|
|
(NoOp(a), Transpose(b)) => c.gemm(alpha, &a, &b.transpose(), beta),
|
|
(Transpose(a), Transpose(b)) => c.gemm(alpha, &a.transpose(), &b.transpose(), beta)
|
|
}
|
|
}
|
|
|
|
proptest! {
|
|
#[test]
|
|
fn spmm_csr_dense_agrees_with_dense_result(
|
|
SpmmCsrDenseArgs { c, beta, alpha, a, b }
|
|
in spmm_csr_dense_args_strategy()
|
|
) {
|
|
let mut spmm_result = c.clone();
|
|
spmm_csr_dense(beta, &mut spmm_result, alpha, a.as_ref(), b.as_ref());
|
|
|
|
let mut gemm_result = c.clone();
|
|
let a_dense = a.map_same_op(|a| DMatrix::from(&a));
|
|
dense_gemm(beta, &mut gemm_result, alpha, a_dense.as_ref(), b.as_ref());
|
|
|
|
prop_assert_eq!(spmm_result, gemm_result);
|
|
}
|
|
|
|
#[test]
|
|
fn spmm_csr_dense_panics_on_dim_mismatch(
|
|
(alpha, beta, c, a, b)
|
|
in (PROPTEST_I32_VALUE_STRATEGY,
|
|
PROPTEST_I32_VALUE_STRATEGY,
|
|
dense_strategy(),
|
|
op_strategy(csr_strategy()),
|
|
op_strategy(dense_strategy()))
|
|
) {
|
|
// We refer to `A * B` as the "product"
|
|
let product_rows = match &a {
|
|
Op::NoOp(ref a) => a.nrows(),
|
|
Op::Transpose(ref a) => a.ncols(),
|
|
};
|
|
let product_cols = match &b {
|
|
Op::NoOp(ref b) => b.ncols(),
|
|
Op::Transpose(ref b) => b.nrows(),
|
|
};
|
|
// Determine the common dimension in the product
|
|
// from the perspective of a and b, respectively
|
|
let product_a_common = match &a {
|
|
Op::NoOp(ref a) => a.ncols(),
|
|
Op::Transpose(ref a) => a.nrows(),
|
|
};
|
|
let product_b_common = match &b {
|
|
Op::NoOp(ref b) => b.nrows(),
|
|
Op::Transpose(ref b) => b.ncols()
|
|
};
|
|
|
|
let dims_are_compatible = product_rows == c.nrows()
|
|
&& product_cols == c.ncols()
|
|
&& product_a_common == product_b_common;
|
|
|
|
// If the dimensions randomly happen to be compatible, then of course we need to
|
|
// skip the test, so we assume that they are not.
|
|
prop_assume!(!dims_are_compatible);
|
|
|
|
let result = catch_unwind(|| {
|
|
let mut spmm_result = c.clone();
|
|
spmm_csr_dense(beta, &mut spmm_result, alpha, a.as_ref(), b.as_ref());
|
|
});
|
|
|
|
prop_assert!(result.is_err(),
|
|
"The SPMM kernel executed successfully despite mismatch dimensions");
|
|
}
|
|
|
|
#[test]
|
|
fn spadd_pattern_test((a, b) in spadd_pattern_strategy())
|
|
{
|
|
// (a, b) are dimensionally compatible patterns
|
|
let pattern_result = spadd_pattern(&a, &b);
|
|
|
|
// To verify the pattern, we construct CSR matrices with positive integer entries
|
|
// corresponding to a and b, and convert them to dense matrices.
|
|
// The sum of these dense matrices will then have non-zeros in exactly the same locations
|
|
// as the result of "adding" the sparsity patterns
|
|
let a_csr = CsrMatrix::try_from_pattern_and_values(a.clone(), vec![1; a.nnz()])
|
|
.unwrap();
|
|
let a_dense = DMatrix::from(&a_csr);
|
|
let b_csr = CsrMatrix::try_from_pattern_and_values(b.clone(), vec![1; b.nnz()])
|
|
.unwrap();
|
|
let b_dense = DMatrix::from(&b_csr);
|
|
let c_dense = a_dense + b_dense;
|
|
let c_csr = CsrMatrix::from(&c_dense);
|
|
|
|
prop_assert_eq!(&pattern_result, c_csr.pattern());
|
|
}
|
|
|
|
#[test]
|
|
fn spadd_csr_prealloc_test(SpaddCsrArgs { c, beta, alpha, a } in spadd_csr_prealloc_args_strategy()) {
|
|
// Test that we get the expected result by comparing to an equivalent dense operation
|
|
// (here we give in the C matrix, so the sparsity pattern is essentially fixed)
|
|
|
|
let mut c_sparse = c.clone();
|
|
spadd_csr_prealloc(beta, &mut c_sparse, alpha, a.as_ref()).unwrap();
|
|
|
|
let mut c_dense = DMatrix::from(&c);
|
|
let op_a_dense = match a {
|
|
Op::NoOp(a) => DMatrix::from(&a),
|
|
Op::Transpose(a) => DMatrix::from(&a).transpose(),
|
|
};
|
|
c_dense = beta * c_dense + alpha * &op_a_dense;
|
|
|
|
prop_assert_eq!(&DMatrix::from(&c_sparse), &c_dense);
|
|
}
|
|
|
|
#[test]
|
|
fn csr_add_csr(
|
|
// a and b have the same dimensions
|
|
(a, b)
|
|
in csr_strategy()
|
|
.prop_flat_map(|a| {
|
|
let b = csr(PROPTEST_I32_VALUE_STRATEGY, a.nrows(), a.ncols(), PROPTEST_MAX_NNZ);
|
|
(Just(a), b)
|
|
}))
|
|
{
|
|
// We use the dense result as the ground truth for the arithmetic result
|
|
let c_dense = DMatrix::from(&a) + DMatrix::from(&b);
|
|
// However, it's not enough only to cover the dense result, we also need to verify the
|
|
// sparsity pattern. We can determine the exact sparsity pattern by using
|
|
// dense arithmetic with positive integer values and extracting positive entries.
|
|
let c_dense_pattern = dense_csr_pattern(a.pattern()) + dense_csr_pattern(b.pattern());
|
|
let c_pattern = CsrMatrix::from(&c_dense_pattern).pattern().clone();
|
|
|
|
// Check each combination of owned matrices and references
|
|
let c_owned_owned = a.clone() + b.clone();
|
|
prop_assert_eq!(&DMatrix::from(&c_owned_owned), &c_dense);
|
|
prop_assert_eq!(c_owned_owned.pattern(), &c_pattern);
|
|
|
|
let c_owned_ref = a.clone() + &b;
|
|
prop_assert_eq!(&DMatrix::from(&c_owned_ref), &c_dense);
|
|
prop_assert_eq!(c_owned_ref.pattern(), &c_pattern);
|
|
|
|
let c_ref_owned = &a + b.clone();
|
|
prop_assert_eq!(&DMatrix::from(&c_ref_owned), &c_dense);
|
|
prop_assert_eq!(c_ref_owned.pattern(), &c_pattern);
|
|
|
|
let c_ref_ref = &a + &b;
|
|
prop_assert_eq!(&DMatrix::from(&c_ref_ref), &c_dense);
|
|
prop_assert_eq!(c_ref_ref.pattern(), &c_pattern);
|
|
}
|
|
|
|
#[test]
|
|
fn csr_sub_csr(
|
|
// a and b have the same dimensions
|
|
(a, b)
|
|
in csr_strategy()
|
|
.prop_flat_map(|a| {
|
|
let b = csr(PROPTEST_I32_VALUE_STRATEGY, a.nrows(), a.ncols(), PROPTEST_MAX_NNZ);
|
|
(Just(a), b)
|
|
}))
|
|
{
|
|
// See comments in csr_add_csr for rationale for checking the pattern this way
|
|
let c_dense = DMatrix::from(&a) - DMatrix::from(&b);
|
|
let c_dense_pattern = dense_csr_pattern(a.pattern()) + dense_csr_pattern(b.pattern());
|
|
let c_pattern = CsrMatrix::from(&c_dense_pattern).pattern().clone();
|
|
|
|
// Check each combination of owned matrices and references
|
|
let c_owned_owned = a.clone() - b.clone();
|
|
prop_assert_eq!(&DMatrix::from(&c_owned_owned), &c_dense);
|
|
prop_assert_eq!(c_owned_owned.pattern(), &c_pattern);
|
|
|
|
let c_owned_ref = a.clone() - &b;
|
|
prop_assert_eq!(&DMatrix::from(&c_owned_ref), &c_dense);
|
|
prop_assert_eq!(c_owned_ref.pattern(), &c_pattern);
|
|
|
|
let c_ref_owned = &a - b.clone();
|
|
prop_assert_eq!(&DMatrix::from(&c_ref_owned), &c_dense);
|
|
prop_assert_eq!(c_ref_owned.pattern(), &c_pattern);
|
|
|
|
let c_ref_ref = &a - &b;
|
|
prop_assert_eq!(&DMatrix::from(&c_ref_ref), &c_dense);
|
|
prop_assert_eq!(c_ref_ref.pattern(), &c_pattern);
|
|
}
|
|
|
|
#[test]
|
|
fn spmm_csr_pattern_test((a, b) in spmm_csr_pattern_strategy())
|
|
{
|
|
// (a, b) are multiplication-wise dimensionally compatible patterns
|
|
let c_pattern = spmm_csr_pattern(&a, &b);
|
|
|
|
// To verify the pattern, we construct CSR matrices with positive integer entries
|
|
// corresponding to a and b, and convert them to dense matrices.
|
|
// The product of these dense matrices will then have non-zeros in exactly the same locations
|
|
// as the result of "multiplying" the sparsity patterns
|
|
let a_csr = CsrMatrix::try_from_pattern_and_values(a.clone(), vec![1; a.nnz()])
|
|
.unwrap();
|
|
let a_dense = DMatrix::from(&a_csr);
|
|
let b_csr = CsrMatrix::try_from_pattern_and_values(b.clone(), vec![1; b.nnz()])
|
|
.unwrap();
|
|
let b_dense = DMatrix::from(&b_csr);
|
|
let c_dense = a_dense * b_dense;
|
|
let c_csr = CsrMatrix::from(&c_dense);
|
|
|
|
prop_assert_eq!(&c_pattern, c_csr.pattern());
|
|
}
|
|
|
|
#[test]
|
|
fn spmm_csr_prealloc_test(SpmmCsrArgs { c, beta, alpha, a, b }
|
|
in spmm_csr_prealloc_args_strategy()
|
|
) {
|
|
// Test that we get the expected result by comparing to an equivalent dense operation
|
|
// (here we give in the C matrix, so the sparsity pattern is essentially fixed)
|
|
let mut c_sparse = c.clone();
|
|
spmm_csr_prealloc(beta, &mut c_sparse, alpha, a.as_ref(), b.as_ref()).unwrap();
|
|
|
|
let mut c_dense = DMatrix::from(&c);
|
|
let op_a_dense = match a {
|
|
Op::NoOp(ref a) => DMatrix::from(a),
|
|
Op::Transpose(ref a) => DMatrix::from(a).transpose(),
|
|
};
|
|
let op_b_dense = match b {
|
|
Op::NoOp(ref b) => DMatrix::from(b),
|
|
Op::Transpose(ref b) => DMatrix::from(b).transpose(),
|
|
};
|
|
c_dense = beta * c_dense + alpha * &op_a_dense * op_b_dense;
|
|
|
|
prop_assert_eq!(&DMatrix::from(&c_sparse), &c_dense);
|
|
}
|
|
|
|
#[test]
|
|
fn spmm_csr_prealloc_panics_on_dim_mismatch(
|
|
(alpha, beta, c, a, b)
|
|
in (PROPTEST_I32_VALUE_STRATEGY,
|
|
PROPTEST_I32_VALUE_STRATEGY,
|
|
csr_strategy(),
|
|
op_strategy(csr_strategy()),
|
|
op_strategy(csr_strategy()))
|
|
) {
|
|
// We refer to `A * B` as the "product"
|
|
let product_rows = match &a {
|
|
Op::NoOp(ref a) => a.nrows(),
|
|
Op::Transpose(ref a) => a.ncols(),
|
|
};
|
|
let product_cols = match &b {
|
|
Op::NoOp(ref b) => b.ncols(),
|
|
Op::Transpose(ref b) => b.nrows(),
|
|
};
|
|
// Determine the common dimension in the product
|
|
// from the perspective of a and b, respectively
|
|
let product_a_common = match &a {
|
|
Op::NoOp(ref a) => a.ncols(),
|
|
Op::Transpose(ref a) => a.nrows(),
|
|
};
|
|
let product_b_common = match &b {
|
|
Op::NoOp(ref b) => b.nrows(),
|
|
Op::Transpose(ref b) => b.ncols(),
|
|
};
|
|
|
|
let dims_are_compatible = product_rows == c.nrows()
|
|
&& product_cols == c.ncols()
|
|
&& product_a_common == product_b_common;
|
|
|
|
// If the dimensions randomly happen to be compatible, then of course we need to
|
|
// skip the test, so we assume that they are not.
|
|
prop_assume!(!dims_are_compatible);
|
|
|
|
let result = catch_unwind(|| {
|
|
let mut spmm_result = c.clone();
|
|
spmm_csr_prealloc(beta, &mut spmm_result, alpha, a.as_ref(), b.as_ref()).unwrap();
|
|
});
|
|
|
|
prop_assert!(result.is_err(),
|
|
"The SPMM kernel executed successfully despite mismatch dimensions");
|
|
}
|
|
|
|
#[test]
|
|
fn spadd_csr_prealloc_panics_on_dim_mismatch(
|
|
(alpha, beta, c, op_a)
|
|
in (PROPTEST_I32_VALUE_STRATEGY,
|
|
PROPTEST_I32_VALUE_STRATEGY,
|
|
csr_strategy(),
|
|
op_strategy(csr_strategy()))
|
|
) {
|
|
let op_a_rows = match &op_a {
|
|
&Op::NoOp(ref a) => a.nrows(),
|
|
&Op::Transpose(ref a) => a.ncols()
|
|
};
|
|
let op_a_cols = match &op_a {
|
|
&Op::NoOp(ref a) => a.ncols(),
|
|
&Op::Transpose(ref a) => a.nrows()
|
|
};
|
|
|
|
let dims_are_compatible = c.nrows() == op_a_rows && c.ncols() == op_a_cols;
|
|
|
|
// If the dimensions randomly happen to be compatible, then of course we need to
|
|
// skip the test, so we assume that they are not.
|
|
prop_assume!(!dims_are_compatible);
|
|
|
|
let result = catch_unwind(|| {
|
|
let mut spmm_result = c.clone();
|
|
spadd_csr_prealloc(beta, &mut spmm_result, alpha, op_a.as_ref()).unwrap();
|
|
});
|
|
|
|
prop_assert!(result.is_err(),
|
|
"The SPMM kernel executed successfully despite mismatch dimensions");
|
|
}
|
|
|
|
#[test]
|
|
fn csr_mul_csr(
|
|
// a and b have dimensions compatible for multiplication
|
|
(a, b)
|
|
in csr_strategy()
|
|
.prop_flat_map(|a| {
|
|
let max_nnz = PROPTEST_MAX_NNZ;
|
|
let cols = PROPTEST_MATRIX_DIM;
|
|
let b = csr(PROPTEST_I32_VALUE_STRATEGY, a.ncols(), cols, max_nnz);
|
|
(Just(a), b)
|
|
}))
|
|
{
|
|
// We use the dense result as the ground truth for the arithmetic result
|
|
let c_dense = DMatrix::from(&a) * DMatrix::from(&b);
|
|
// However, it's not enough only to cover the dense result, we also need to verify the
|
|
// sparsity pattern. We can determine the exact sparsity pattern by using
|
|
// dense arithmetic with positive integer values and extracting positive entries.
|
|
let c_dense_pattern = dense_csr_pattern(a.pattern()) * dense_csr_pattern(b.pattern());
|
|
let c_pattern = CsrMatrix::from(&c_dense_pattern).pattern().clone();
|
|
|
|
// Check each combination of owned matrices and references
|
|
let c_owned_owned = a.clone() * b.clone();
|
|
prop_assert_eq!(&DMatrix::from(&c_owned_owned), &c_dense);
|
|
prop_assert_eq!(c_owned_owned.pattern(), &c_pattern);
|
|
|
|
let c_owned_ref = a.clone() * &b;
|
|
prop_assert_eq!(&DMatrix::from(&c_owned_ref), &c_dense);
|
|
prop_assert_eq!(c_owned_ref.pattern(), &c_pattern);
|
|
|
|
let c_ref_owned = &a * b.clone();
|
|
prop_assert_eq!(&DMatrix::from(&c_ref_owned), &c_dense);
|
|
prop_assert_eq!(c_ref_owned.pattern(), &c_pattern);
|
|
|
|
let c_ref_ref = &a * &b;
|
|
prop_assert_eq!(&DMatrix::from(&c_ref_ref), &c_dense);
|
|
prop_assert_eq!(c_ref_ref.pattern(), &c_pattern);
|
|
}
|
|
|
|
#[test]
|
|
fn spmm_csc_prealloc_test(SpmmCscArgs { c, beta, alpha, a, b }
|
|
in spmm_csc_prealloc_args_strategy()
|
|
) {
|
|
// Test that we get the expected result by comparing to an equivalent dense operation
|
|
// (here we give in the C matrix, so the sparsity pattern is essentially fixed)
|
|
let mut c_sparse = c.clone();
|
|
spmm_csc_prealloc(beta, &mut c_sparse, alpha, a.as_ref(), b.as_ref()).unwrap();
|
|
|
|
let mut c_dense = DMatrix::from(&c);
|
|
let op_a_dense = match a {
|
|
Op::NoOp(ref a) => DMatrix::from(a),
|
|
Op::Transpose(ref a) => DMatrix::from(a).transpose(),
|
|
};
|
|
let op_b_dense = match b {
|
|
Op::NoOp(ref b) => DMatrix::from(b),
|
|
Op::Transpose(ref b) => DMatrix::from(b).transpose(),
|
|
};
|
|
c_dense = beta * c_dense + alpha * &op_a_dense * op_b_dense;
|
|
|
|
prop_assert_eq!(&DMatrix::from(&c_sparse), &c_dense);
|
|
}
|
|
|
|
#[test]
|
|
fn spmm_csc_prealloc_panics_on_dim_mismatch(
|
|
(alpha, beta, c, a, b)
|
|
in (PROPTEST_I32_VALUE_STRATEGY,
|
|
PROPTEST_I32_VALUE_STRATEGY,
|
|
csc_strategy(),
|
|
op_strategy(csc_strategy()),
|
|
op_strategy(csc_strategy()))
|
|
) {
|
|
// We refer to `A * B` as the "product"
|
|
let product_rows = match &a {
|
|
Op::NoOp(ref a) => a.nrows(),
|
|
Op::Transpose(ref a) => a.ncols(),
|
|
};
|
|
let product_cols = match &b {
|
|
Op::NoOp(ref b) => b.ncols(),
|
|
Op::Transpose(ref b) => b.nrows(),
|
|
};
|
|
// Determine the common dimension in the product
|
|
// from the perspective of a and b, respectively
|
|
let product_a_common = match &a {
|
|
Op::NoOp(ref a) => a.ncols(),
|
|
Op::Transpose(ref a) => a.nrows(),
|
|
};
|
|
let product_b_common = match &b {
|
|
Op::NoOp(ref b) => b.nrows(),
|
|
Op::Transpose(ref b) => b.ncols(),
|
|
};
|
|
|
|
let dims_are_compatible = product_rows == c.nrows()
|
|
&& product_cols == c.ncols()
|
|
&& product_a_common == product_b_common;
|
|
|
|
// If the dimensions randomly happen to be compatible, then of course we need to
|
|
// skip the test, so we assume that they are not.
|
|
prop_assume!(!dims_are_compatible);
|
|
|
|
let result = catch_unwind(|| {
|
|
let mut spmm_result = c.clone();
|
|
spmm_csc_prealloc(beta, &mut spmm_result, alpha, a.as_ref(), b.as_ref()).unwrap();
|
|
});
|
|
|
|
prop_assert!(result.is_err(),
|
|
"The SPMM kernel executed successfully despite mismatch dimensions");
|
|
}
|
|
|
|
#[test]
|
|
fn csc_mul_csc(
|
|
// a and b have dimensions compatible for multiplication
|
|
(a, b)
|
|
in csc_strategy()
|
|
.prop_flat_map(|a| {
|
|
let max_nnz = PROPTEST_MAX_NNZ;
|
|
let cols = PROPTEST_MATRIX_DIM;
|
|
let b = csc(PROPTEST_I32_VALUE_STRATEGY, a.ncols(), cols, max_nnz);
|
|
(Just(a), b)
|
|
})
|
|
.prop_map(|(a, b)| {
|
|
println!("a: {} x {}, b: {} x {}", a.nrows(), a.ncols(), b.nrows(), b.ncols());
|
|
(a, b)
|
|
}))
|
|
{
|
|
assert_eq!(a.ncols(), b.nrows());
|
|
// We use the dense result as the ground truth for the arithmetic result
|
|
let c_dense = DMatrix::from(&a) * DMatrix::from(&b);
|
|
// However, it's not enough only to cover the dense result, we also need to verify the
|
|
// sparsity pattern. We can determine the exact sparsity pattern by using
|
|
// dense arithmetic with positive integer values and extracting positive entries.
|
|
let c_dense_pattern = dense_csc_pattern(a.pattern()) * dense_csc_pattern(b.pattern());
|
|
let c_pattern = CscMatrix::from(&c_dense_pattern).pattern().clone();
|
|
|
|
// Check each combination of owned matrices and references
|
|
let c_owned_owned = a.clone() * b.clone();
|
|
prop_assert_eq!(&DMatrix::from(&c_owned_owned), &c_dense);
|
|
prop_assert_eq!(c_owned_owned.pattern(), &c_pattern);
|
|
|
|
let c_owned_ref = a.clone() * &b;
|
|
prop_assert_eq!(&DMatrix::from(&c_owned_ref), &c_dense);
|
|
prop_assert_eq!(c_owned_ref.pattern(), &c_pattern);
|
|
|
|
let c_ref_owned = &a * b.clone();
|
|
prop_assert_eq!(&DMatrix::from(&c_ref_owned), &c_dense);
|
|
prop_assert_eq!(c_ref_owned.pattern(), &c_pattern);
|
|
|
|
let c_ref_ref = &a * &b;
|
|
prop_assert_eq!(&DMatrix::from(&c_ref_ref), &c_dense);
|
|
prop_assert_eq!(c_ref_ref.pattern(), &c_pattern);
|
|
}
|
|
|
|
#[test]
|
|
fn spmm_csc_dense_agrees_with_dense_result(
|
|
SpmmCscDenseArgs { c, beta, alpha, a, b }
|
|
in spmm_csc_dense_args_strategy()
|
|
) {
|
|
let mut spmm_result = c.clone();
|
|
spmm_csc_dense(beta, &mut spmm_result, alpha, a.as_ref(), b.as_ref());
|
|
|
|
let mut gemm_result = c.clone();
|
|
let a_dense = a.map_same_op(|a| DMatrix::from(&a));
|
|
dense_gemm(beta, &mut gemm_result, alpha, a_dense.as_ref(), b.as_ref());
|
|
|
|
prop_assert_eq!(spmm_result, gemm_result);
|
|
}
|
|
|
|
#[test]
|
|
fn spmm_csc_dense_panics_on_dim_mismatch(
|
|
(alpha, beta, c, a, b)
|
|
in (PROPTEST_I32_VALUE_STRATEGY,
|
|
PROPTEST_I32_VALUE_STRATEGY,
|
|
dense_strategy(),
|
|
op_strategy(csc_strategy()),
|
|
op_strategy(dense_strategy()))
|
|
) {
|
|
// We refer to `A * B` as the "product"
|
|
let product_rows = match &a {
|
|
Op::NoOp(ref a) => a.nrows(),
|
|
Op::Transpose(ref a) => a.ncols(),
|
|
};
|
|
let product_cols = match &b {
|
|
Op::NoOp(ref b) => b.ncols(),
|
|
Op::Transpose(ref b) => b.nrows(),
|
|
};
|
|
// Determine the common dimension in the product
|
|
// from the perspective of a and b, respectively
|
|
let product_a_common = match &a {
|
|
Op::NoOp(ref a) => a.ncols(),
|
|
Op::Transpose(ref a) => a.nrows(),
|
|
};
|
|
let product_b_common = match &b {
|
|
Op::NoOp(ref b) => b.nrows(),
|
|
Op::Transpose(ref b) => b.ncols()
|
|
};
|
|
|
|
let dims_are_compatible = product_rows == c.nrows()
|
|
&& product_cols == c.ncols()
|
|
&& product_a_common == product_b_common;
|
|
|
|
// If the dimensions randomly happen to be compatible, then of course we need to
|
|
// skip the test, so we assume that they are not.
|
|
prop_assume!(!dims_are_compatible);
|
|
|
|
let result = catch_unwind(|| {
|
|
let mut spmm_result = c.clone();
|
|
spmm_csc_dense(beta, &mut spmm_result, alpha, a.as_ref(), b.as_ref());
|
|
});
|
|
|
|
prop_assert!(result.is_err(),
|
|
"The SPMM kernel executed successfully despite mismatch dimensions");
|
|
}
|
|
|
|
#[test]
|
|
fn spadd_csc_prealloc_test(SpaddCscArgs { c, beta, alpha, a } in spadd_csc_prealloc_args_strategy()) {
|
|
// Test that we get the expected result by comparing to an equivalent dense operation
|
|
// (here we give in the C matrix, so the sparsity pattern is essentially fixed)
|
|
|
|
let mut c_sparse = c.clone();
|
|
spadd_csc_prealloc(beta, &mut c_sparse, alpha, a.as_ref()).unwrap();
|
|
|
|
let mut c_dense = DMatrix::from(&c);
|
|
let op_a_dense = match a {
|
|
Op::NoOp(a) => DMatrix::from(&a),
|
|
Op::Transpose(a) => DMatrix::from(&a).transpose(),
|
|
};
|
|
c_dense = beta * c_dense + alpha * &op_a_dense;
|
|
|
|
prop_assert_eq!(&DMatrix::from(&c_sparse), &c_dense);
|
|
}
|
|
|
|
#[test]
|
|
fn spadd_csc_prealloc_panics_on_dim_mismatch(
|
|
(alpha, beta, c, op_a)
|
|
in (PROPTEST_I32_VALUE_STRATEGY,
|
|
PROPTEST_I32_VALUE_STRATEGY,
|
|
csc_strategy(),
|
|
op_strategy(csc_strategy()))
|
|
) {
|
|
let op_a_rows = match &op_a {
|
|
&Op::NoOp(ref a) => a.nrows(),
|
|
&Op::Transpose(ref a) => a.ncols()
|
|
};
|
|
let op_a_cols = match &op_a {
|
|
&Op::NoOp(ref a) => a.ncols(),
|
|
&Op::Transpose(ref a) => a.nrows()
|
|
};
|
|
|
|
let dims_are_compatible = c.nrows() == op_a_rows && c.ncols() == op_a_cols;
|
|
|
|
// If the dimensions randomly happen to be compatible, then of course we need to
|
|
// skip the test, so we assume that they are not.
|
|
prop_assume!(!dims_are_compatible);
|
|
|
|
let result = catch_unwind(|| {
|
|
let mut spmm_result = c.clone();
|
|
spadd_csc_prealloc(beta, &mut spmm_result, alpha, op_a.as_ref()).unwrap();
|
|
});
|
|
|
|
prop_assert!(result.is_err(),
|
|
"The SPMM kernel executed successfully despite mismatch dimensions");
|
|
}
|
|
|
|
#[test]
|
|
fn csc_add_csc(
|
|
// a and b have the same dimensions
|
|
(a, b)
|
|
in csc_strategy()
|
|
.prop_flat_map(|a| {
|
|
let b = csc(PROPTEST_I32_VALUE_STRATEGY, a.nrows(), a.ncols(), PROPTEST_MAX_NNZ);
|
|
(Just(a), b)
|
|
}))
|
|
{
|
|
// We use the dense result as the ground truth for the arithmetic result
|
|
let c_dense = DMatrix::from(&a) + DMatrix::from(&b);
|
|
// However, it's not enough only to cover the dense result, we also need to verify the
|
|
// sparsity pattern. We can determine the exact sparsity pattern by using
|
|
// dense arithmetic with positive integer values and extracting positive entries.
|
|
let c_dense_pattern = dense_csc_pattern(a.pattern()) + dense_csc_pattern(b.pattern());
|
|
let c_pattern = CscMatrix::from(&c_dense_pattern).pattern().clone();
|
|
|
|
// Check each combination of owned matrices and references
|
|
let c_owned_owned = a.clone() + b.clone();
|
|
prop_assert_eq!(&DMatrix::from(&c_owned_owned), &c_dense);
|
|
prop_assert_eq!(c_owned_owned.pattern(), &c_pattern);
|
|
|
|
let c_owned_ref = a.clone() + &b;
|
|
prop_assert_eq!(&DMatrix::from(&c_owned_ref), &c_dense);
|
|
prop_assert_eq!(c_owned_ref.pattern(), &c_pattern);
|
|
|
|
let c_ref_owned = &a + b.clone();
|
|
prop_assert_eq!(&DMatrix::from(&c_ref_owned), &c_dense);
|
|
prop_assert_eq!(c_ref_owned.pattern(), &c_pattern);
|
|
|
|
let c_ref_ref = &a + &b;
|
|
prop_assert_eq!(&DMatrix::from(&c_ref_ref), &c_dense);
|
|
prop_assert_eq!(c_ref_ref.pattern(), &c_pattern);
|
|
}
|
|
|
|
#[test]
|
|
fn csc_sub_csc(
|
|
// a and b have the same dimensions
|
|
(a, b)
|
|
in csc_strategy()
|
|
.prop_flat_map(|a| {
|
|
let b = csc(PROPTEST_I32_VALUE_STRATEGY, a.nrows(), a.ncols(), PROPTEST_MAX_NNZ);
|
|
(Just(a), b)
|
|
}))
|
|
{
|
|
// See comments in csc_add_csc for rationale for checking the pattern this way
|
|
let c_dense = DMatrix::from(&a) - DMatrix::from(&b);
|
|
let c_dense_pattern = dense_csc_pattern(a.pattern()) + dense_csc_pattern(b.pattern());
|
|
let c_pattern = CscMatrix::from(&c_dense_pattern).pattern().clone();
|
|
|
|
// Check each combination of owned matrices and references
|
|
let c_owned_owned = a.clone() - b.clone();
|
|
prop_assert_eq!(&DMatrix::from(&c_owned_owned), &c_dense);
|
|
prop_assert_eq!(c_owned_owned.pattern(), &c_pattern);
|
|
|
|
let c_owned_ref = a.clone() - &b;
|
|
prop_assert_eq!(&DMatrix::from(&c_owned_ref), &c_dense);
|
|
prop_assert_eq!(c_owned_ref.pattern(), &c_pattern);
|
|
|
|
let c_ref_owned = &a - b.clone();
|
|
prop_assert_eq!(&DMatrix::from(&c_ref_owned), &c_dense);
|
|
prop_assert_eq!(c_ref_owned.pattern(), &c_pattern);
|
|
|
|
let c_ref_ref = &a - &b;
|
|
prop_assert_eq!(&DMatrix::from(&c_ref_ref), &c_dense);
|
|
prop_assert_eq!(c_ref_ref.pattern(), &c_pattern);
|
|
}
|
|
|
|
#[test]
|
|
fn csr_mul_scalar((scalar, matrix) in (PROPTEST_I32_VALUE_STRATEGY, csr_strategy())) {
|
|
let dense = DMatrix::from(&matrix);
|
|
let dense_result = dense * scalar;
|
|
|
|
let result_owned_owned = matrix.clone() * scalar;
|
|
let result_owned_ref = matrix.clone() * &scalar;
|
|
let result_ref_owned = &matrix * scalar;
|
|
let result_ref_ref = &matrix * &scalar;
|
|
|
|
// Check that all the combinations of reference and owned variables return the same
|
|
// result
|
|
prop_assert_eq!(&result_owned_ref, &result_owned_owned);
|
|
prop_assert_eq!(&result_ref_owned, &result_owned_owned);
|
|
prop_assert_eq!(&result_ref_ref, &result_owned_owned);
|
|
|
|
// Check that this result is consistent with the dense result, and that the
|
|
// NNZ is the same as before
|
|
prop_assert_eq!(result_owned_owned.nnz(), matrix.nnz());
|
|
prop_assert_eq!(DMatrix::from(&result_owned_owned), dense_result);
|
|
|
|
// Finally, check mul-assign
|
|
let mut result_assign_owned = matrix.clone();
|
|
result_assign_owned *= scalar;
|
|
let mut result_assign_ref = matrix.clone();
|
|
result_assign_ref *= &scalar;
|
|
|
|
prop_assert_eq!(&result_assign_owned, &result_owned_owned);
|
|
prop_assert_eq!(&result_assign_ref, &result_owned_owned);
|
|
}
|
|
|
|
#[test]
|
|
fn csc_mul_scalar((scalar, matrix) in (PROPTEST_I32_VALUE_STRATEGY, csc_strategy())) {
|
|
let dense = DMatrix::from(&matrix);
|
|
let dense_result = dense * scalar;
|
|
|
|
let result_owned_owned = matrix.clone() * scalar;
|
|
let result_owned_ref = matrix.clone() * &scalar;
|
|
let result_ref_owned = &matrix * scalar;
|
|
let result_ref_ref = &matrix * &scalar;
|
|
|
|
// Check that all the combinations of reference and owned variables return the same
|
|
// result
|
|
prop_assert_eq!(&result_owned_ref, &result_owned_owned);
|
|
prop_assert_eq!(&result_ref_owned, &result_owned_owned);
|
|
prop_assert_eq!(&result_ref_ref, &result_owned_owned);
|
|
|
|
// Check that this result is consistent with the dense result, and that the
|
|
// NNZ is the same as before
|
|
prop_assert_eq!(result_owned_owned.nnz(), matrix.nnz());
|
|
prop_assert_eq!(DMatrix::from(&result_owned_owned), dense_result);
|
|
|
|
// Finally, check mul-assign
|
|
let mut result_assign_owned = matrix.clone();
|
|
result_assign_owned *= scalar;
|
|
let mut result_assign_ref = matrix.clone();
|
|
result_assign_ref *= &scalar;
|
|
|
|
prop_assert_eq!(&result_assign_owned, &result_owned_owned);
|
|
prop_assert_eq!(&result_assign_ref, &result_owned_owned);
|
|
}
|
|
|
|
#[test]
|
|
fn scalar_mul_csr((scalar, matrix) in (PROPTEST_I32_VALUE_STRATEGY, csr_strategy())) {
|
|
// For scalar * matrix, we cannot generally implement this for any type T,
|
|
// so we have implemented this for the built in types separately. This requires
|
|
// us to also test these types separately. For validation, we check that
|
|
// scalar * matrix == matrix * scalar,
|
|
// which is sufficient for correctness if matrix * scalar is correctly implemented
|
|
// (which is tested separately).
|
|
// We only test for i32 here, because with our current implementation, the implementations
|
|
// for different types are completely identical and only rely on basic arithmetic
|
|
// operations
|
|
let result = &matrix * scalar;
|
|
prop_assert_eq!(&(scalar * matrix.clone()), &result);
|
|
prop_assert_eq!(&(scalar * &matrix), &result);
|
|
prop_assert_eq!(&(&scalar * matrix.clone()), &result);
|
|
prop_assert_eq!(&(&scalar * &matrix), &result);
|
|
}
|
|
|
|
#[test]
|
|
fn scalar_mul_csc((scalar, matrix) in (PROPTEST_I32_VALUE_STRATEGY, csc_strategy())) {
|
|
// See comments for scalar_mul_csr
|
|
let result = &matrix * scalar;
|
|
prop_assert_eq!(&(scalar * matrix.clone()), &result);
|
|
prop_assert_eq!(&(scalar * &matrix), &result);
|
|
prop_assert_eq!(&(&scalar * matrix.clone()), &result);
|
|
prop_assert_eq!(&(&scalar * &matrix), &result);
|
|
}
|
|
|
|
#[test]
|
|
fn csr_neg(csr in csr_strategy()) {
|
|
let result = &csr - 2 * &csr;
|
|
prop_assert_eq!(-&csr, result.clone());
|
|
prop_assert_eq!(-csr, result);
|
|
}
|
|
|
|
#[test]
|
|
fn csc_neg(csc in csc_strategy()) {
|
|
let result = &csc - 2 * &csc;
|
|
prop_assert_eq!(-&csc, result.clone());
|
|
prop_assert_eq!(-csc, result);
|
|
}
|
|
|
|
#[test]
|
|
fn csr_div((csr, divisor) in (csr_strategy(), non_zero_i32_value_strategy())) {
|
|
let result_owned_owned = csr.clone() / divisor;
|
|
let result_owned_ref = csr.clone() / &divisor;
|
|
let result_ref_owned = &csr / divisor;
|
|
let result_ref_ref = &csr / &divisor;
|
|
|
|
// Verify that all results are the same
|
|
prop_assert_eq!(&result_owned_ref, &result_owned_owned);
|
|
prop_assert_eq!(&result_ref_owned, &result_owned_owned);
|
|
prop_assert_eq!(&result_ref_ref, &result_owned_owned);
|
|
|
|
// Check that NNZ was left unchanged
|
|
prop_assert_eq!(result_owned_owned.nnz(), csr.nnz());
|
|
|
|
// Then compare against the equivalent dense result
|
|
let dense_result = DMatrix::from(&csr) / divisor;
|
|
prop_assert_eq!(DMatrix::from(&result_owned_owned), dense_result);
|
|
}
|
|
|
|
#[test]
|
|
fn csc_div((csc, divisor) in (csc_strategy(), non_zero_i32_value_strategy())) {
|
|
let result_owned_owned = csc.clone() / divisor;
|
|
let result_owned_ref = csc.clone() / &divisor;
|
|
let result_ref_owned = &csc / divisor;
|
|
let result_ref_ref = &csc / &divisor;
|
|
|
|
// Verify that all results are the same
|
|
prop_assert_eq!(&result_owned_ref, &result_owned_owned);
|
|
prop_assert_eq!(&result_ref_owned, &result_owned_owned);
|
|
prop_assert_eq!(&result_ref_ref, &result_owned_owned);
|
|
|
|
// Check that NNZ was left unchanged
|
|
prop_assert_eq!(result_owned_owned.nnz(), csc.nnz());
|
|
|
|
// Then compare against the equivalent dense result
|
|
let dense_result = DMatrix::from(&csc) / divisor;
|
|
prop_assert_eq!(DMatrix::from(&result_owned_owned), dense_result);
|
|
}
|
|
|
|
#[test]
|
|
fn csr_div_assign((csr, divisor) in (csr_strategy(), non_zero_i32_value_strategy())) {
|
|
let result_owned = {
|
|
let mut csr = csr.clone();
|
|
csr /= divisor;
|
|
csr
|
|
};
|
|
|
|
let result_ref = {
|
|
let mut csr = csr.clone();
|
|
csr /= &divisor;
|
|
csr
|
|
};
|
|
|
|
let expected_result = csr / divisor;
|
|
|
|
prop_assert_eq!(&result_owned, &expected_result);
|
|
prop_assert_eq!(&result_ref, &expected_result);
|
|
}
|
|
|
|
#[test]
|
|
fn csc_div_assign((csc, divisor) in (csc_strategy(), non_zero_i32_value_strategy())) {
|
|
let result_owned = {
|
|
let mut csc = csc.clone();
|
|
csc /= divisor;
|
|
csc
|
|
};
|
|
|
|
let result_ref = {
|
|
let mut csc = csc.clone();
|
|
csc /= &divisor;
|
|
csc
|
|
};
|
|
|
|
let expected_result = csc / divisor;
|
|
|
|
prop_assert_eq!(&result_owned, &expected_result);
|
|
prop_assert_eq!(&result_ref, &expected_result);
|
|
}
|
|
|
|
#[test]
|
|
fn csr_mul_dense(
|
|
// a and b have dimensions compatible for multiplication
|
|
(a, b)
|
|
in csr_strategy()
|
|
.prop_flat_map(|a| {
|
|
let cols = PROPTEST_MATRIX_DIM;
|
|
let b = matrix(PROPTEST_I32_VALUE_STRATEGY, a.ncols(), cols);
|
|
(Just(a), b)
|
|
}))
|
|
{
|
|
prop_assert_eq!(&a * &b, &DMatrix::from(&a) * &b);
|
|
}
|
|
|
|
#[test]
|
|
fn csc_mul_dense(
|
|
// a and b have dimensions compatible for multiplication
|
|
(a, b)
|
|
in csc_strategy()
|
|
.prop_flat_map(|a| {
|
|
let cols = PROPTEST_MATRIX_DIM;
|
|
let b = matrix(PROPTEST_I32_VALUE_STRATEGY, a.ncols(), cols);
|
|
(Just(a), b)
|
|
}))
|
|
{
|
|
prop_assert_eq!(&a * &b, &DMatrix::from(&a) * &b);
|
|
}
|
|
|
|
#[test]
|
|
fn csc_solve_lower_triangular_no_transpose(
|
|
// A CSC matrix `a` and a dimensionally compatible dense matrix `b`
|
|
(a, b)
|
|
in csc_square_with_non_zero_diagonals()
|
|
.prop_flat_map(|a| {
|
|
let nrows = a.nrows();
|
|
(Just(a), matrix(value_strategy::<f64>(), nrows, PROPTEST_MATRIX_DIM))
|
|
}))
|
|
{
|
|
let mut x = b.clone();
|
|
spsolve_csc_lower_triangular(Op::NoOp(&a), &mut x).unwrap();
|
|
|
|
let a_lower = a.lower_triangle();
|
|
// We're using a high tolerance here because there are some "bad" inputs that can give
|
|
// severe loss of precision.
|
|
prop_assert_matrix_eq!(&a_lower * &x, &b, comp = abs, tol = 1e-4);
|
|
}
|
|
|
|
#[test]
|
|
fn csc_solve_lower_triangular_transpose(
|
|
// A CSC matrix `a` and a dimensionally compatible dense matrix `b` (with a transposed)
|
|
(a, b)
|
|
in csc_square_with_non_zero_diagonals()
|
|
.prop_flat_map(|a| {
|
|
let ncols = a.ncols();
|
|
(Just(a), matrix(value_strategy::<f64>(), ncols, PROPTEST_MATRIX_DIM))
|
|
}))
|
|
{
|
|
let mut x = b.clone();
|
|
spsolve_csc_lower_triangular(Op::Transpose(&a), &mut x).unwrap();
|
|
|
|
let a_lower = a.lower_triangle();
|
|
// We're using a high tolerance here because there are some "bad" inputs that can give
|
|
// severe loss of precision.
|
|
prop_assert_matrix_eq!(&a_lower.transpose() * &x, &b, comp = abs, tol = 1e-4);
|
|
}
|
|
|
|
} |