nalgebra/tests/core/blas.rs
Jakub Konka d0fa79f6e1 Fix Vector::axpy for noncommutative cases
One example would be performing simple matrix multiplication
over a division algebra such as quaternions.
2019-09-05 15:12:38 +02:00

130 lines
4.0 KiB
Rust

use na::{geometry::Quaternion, Matrix2, Vector3};
use num_traits::{One, Zero};
#[test]
fn gemm_noncommutative() {
type Qf64 = Quaternion<f64>;
let i = Qf64::from_imag(Vector3::new(1.0, 0.0, 0.0));
let j = Qf64::from_imag(Vector3::new(0.0, 1.0, 0.0));
let k = Qf64::from_imag(Vector3::new(0.0, 0.0, 1.0));
let m1 = Matrix2::new(k, Qf64::zero(), j, i);
// this is the inverse of m1
let m2 = Matrix2::new(-k, Qf64::zero(), Qf64::one(), -i);
let mut res: Matrix2<Qf64> = Matrix2::zero();
res.gemm(Qf64::one(), &m1, &m2, Qf64::zero());
assert_eq!(res, Matrix2::identity());
let mut res: Matrix2<Qf64> = Matrix2::identity();
res.gemm(k, &m1, &m2, -k);
assert_eq!(res, Matrix2::zero());
}
#[cfg(feature = "arbitrary")]
mod blas_quickcheck {
use na::{DMatrix, DVector};
use std::cmp;
quickcheck! {
/*
*
* Symmetric operators.
*
*/
fn gemv_symm(n: usize, alpha: f64, beta: f64) -> bool {
let n = cmp::max(1, cmp::min(n, 50));
let a = DMatrix::<f64>::new_random(n, n);
let a = &a * a.transpose();
let x = DVector::new_random(n);
let mut y1 = DVector::new_random(n);
let mut y2 = y1.clone();
y1.gemv(alpha, &a, &x, beta);
y2.sygemv(alpha, &a.lower_triangle(), &x, beta);
if !relative_eq!(y1, y2, epsilon = 1.0e-10) {
return false;
}
y1.gemv(alpha, &a, &x, 0.0);
y2.sygemv(alpha, &a.lower_triangle(), &x, 0.0);
relative_eq!(y1, y2, epsilon = 1.0e-10)
}
fn gemv_tr(n: usize, alpha: f64, beta: f64) -> bool {
let n = cmp::max(1, cmp::min(n, 50));
let a = DMatrix::<f64>::new_random(n, n);
let x = DVector::new_random(n);
let mut y1 = DVector::new_random(n);
let mut y2 = y1.clone();
y1.gemv(alpha, &a, &x, beta);
y2.gemv_tr(alpha, &a.transpose(), &x, beta);
if !relative_eq!(y1, y2, epsilon = 1.0e-10) {
return false;
}
y1.gemv(alpha, &a, &x, 0.0);
y2.gemv_tr(alpha, &a.transpose(), &x, 0.0);
relative_eq!(y1, y2, epsilon = 1.0e-10)
}
fn ger_symm(n: usize, alpha: f64, beta: f64) -> bool {
let n = cmp::max(1, cmp::min(n, 50));
let a = DMatrix::<f64>::new_random(n, n);
let mut a1 = &a * a.transpose();
let mut a2 = a1.lower_triangle();
let x = DVector::new_random(n);
let y = DVector::new_random(n);
a1.ger(alpha, &x, &y, beta);
a2.syger(alpha, &x, &y, beta);
if !relative_eq!(a1.lower_triangle(), a2) {
return false;
}
a1.ger(alpha, &x, &y, 0.0);
a2.syger(alpha, &x, &y, 0.0);
relative_eq!(a1.lower_triangle(), a2)
}
fn quadform(n: usize, alpha: f64, beta: f64) -> bool {
let n = cmp::max(1, cmp::min(n, 50));
let rhs = DMatrix::<f64>::new_random(6, n);
let mid = DMatrix::<f64>::new_random(6, 6);
let mut res = DMatrix::new_random(n, n);
let expected = &res * beta + rhs.transpose() * &mid * &rhs * alpha;
res.quadform(alpha, &mid, &rhs, beta);
println!("{}{}", res, expected);
relative_eq!(res, expected, epsilon = 1.0e-7)
}
fn quadform_tr(n: usize, alpha: f64, beta: f64) -> bool {
let n = cmp::max(1, cmp::min(n, 50));
let lhs = DMatrix::<f64>::new_random(6, n);
let mid = DMatrix::<f64>::new_random(n, n);
let mut res = DMatrix::new_random(6, 6);
let expected = &res * beta + &lhs * &mid * lhs.transpose() * alpha;
res.quadform_tr(alpha, &lhs, &mid , beta);
println!("{}{}", res, expected);
relative_eq!(res, expected, epsilon = 1.0e-7)
}
}
}