forked from M-Labs/nalgebra
938 lines
21 KiB
Rust
938 lines
21 KiB
Rust
/*!
|
||
# nalgebra
|
||
|
||
**nalgebra** is a low-dimensional linear algebra library written for Rust targeting:
|
||
|
||
* general-purpose linear algebra (still lacks a lot of features…).
|
||
* real time computer graphics.
|
||
* real time computer physics.
|
||
|
||
An on-line version of this documentation is available [here](http://nalgebra.org).
|
||
|
||
## Using **nalgebra**
|
||
All the functionality of **nalgebra** is grouped in one place: the root module `nalgebra::`.
|
||
This module re-exports everything and includes free functions for all traits methods doing
|
||
out-of-place modifications.
|
||
|
||
* You can import the whole prelude using:
|
||
|
||
```.ignore
|
||
use nalgebra::*;
|
||
```
|
||
|
||
The preferred way to use **nalgebra** is to import types and traits explicitly, and call
|
||
free-functions using the `na::` prefix:
|
||
|
||
```.rust
|
||
extern crate nalgebra as na;
|
||
use na::{Vec3, Rot3, Rotation};
|
||
|
||
fn main() {
|
||
let a = Vec3::new(1.0f64, 1.0, 1.0);
|
||
let mut b = Rot3::new(na::zero());
|
||
|
||
b.append_rotation_mut(&a);
|
||
|
||
assert!(na::approx_eq(&na::rotation(&b), &a));
|
||
}
|
||
```
|
||
|
||
## Features
|
||
**nalgebra** is meant to be a general-purpose, low-dimensional, linear algebra library, with
|
||
an optimized set of tools for computer graphics and physics. Those features include:
|
||
|
||
* Vectors with static sizes: `Vec0`, `Vec1`, `Vec2`, `Vec3`, `Vec4`, `Vec5`, `Vec6`.
|
||
* Points with static sizes: `Pnt0`, `Pnt1`, `Pnt2`, `Pnt3`, `Pnt4`, `Pnt5`, `Pnt6`.
|
||
* Square matrices with static sizes: `Mat1`, `Mat2`, `Mat3`, `Mat4`, `Mat5`, `Mat6 `.
|
||
* Rotation matrices: `Rot2`, `Rot3`, `Rot4`.
|
||
* Quaternions: `Quat`, `UnitQuat`.
|
||
* Isometries: `Iso2`, `Iso3`, `Iso4`.
|
||
* 3D projections for computer graphics: `Persp3`, `PerspMat3`, `Ortho3`, `OrthoMat3`.
|
||
* Dynamically sized vector: `DVec`.
|
||
* Dynamically sized (square or rectangular) matrix: `DMat`.
|
||
* A few methods for data analysis: `Cov`, `Mean`.
|
||
* Almost one trait per functionality: useful for generic programming.
|
||
* Operator overloading using multidispatch.
|
||
|
||
|
||
## **nalgebra** in use
|
||
Here are some projects using **nalgebra**.
|
||
Feel free to add your project to this list if you happen to use **nalgebra**!
|
||
|
||
* [nphysics](https://github.com/sebcrozet/nphysics): a real-time physics engine.
|
||
* [ncollide](https://github.com/sebcrozet/ncollide): a collision detection library.
|
||
* [kiss3d](https://github.com/sebcrozet/kiss3d): a minimalistic graphics engine.
|
||
* [nrays](https://github.com/sebcrozet/nrays): a ray tracer.
|
||
*/
|
||
|
||
#![deny(non_camel_case_types)]
|
||
#![deny(unused_parens)]
|
||
#![deny(non_upper_case_globals)]
|
||
#![deny(unused_qualifications)]
|
||
#![deny(unused_results)]
|
||
#![warn(missing_docs)]
|
||
#![doc(html_root_url = "http://nalgebra.org/doc")]
|
||
|
||
extern crate rustc_serialize;
|
||
extern crate rand;
|
||
extern crate num;
|
||
|
||
#[cfg(feature="arbitrary")]
|
||
extern crate quickcheck;
|
||
|
||
use std::cmp;
|
||
use std::ops::{Neg, Mul};
|
||
use num::{Zero, One};
|
||
pub use traits::{
|
||
Absolute,
|
||
AbsoluteRotate,
|
||
ApproxEq,
|
||
Axpy,
|
||
Basis,
|
||
BaseFloat,
|
||
BaseNum,
|
||
Bounded,
|
||
Cast,
|
||
Col,
|
||
ColSlice, RowSlice,
|
||
Cov,
|
||
Cross,
|
||
CrossMatrix,
|
||
Det,
|
||
Diag,
|
||
Dim,
|
||
Dot,
|
||
EigenQR,
|
||
Eye,
|
||
FloatPnt,
|
||
FloatVec,
|
||
FromHomogeneous,
|
||
Indexable,
|
||
Inv,
|
||
Iterable,
|
||
IterableMut,
|
||
Mat,
|
||
Mean,
|
||
Norm,
|
||
NumPnt,
|
||
NumVec,
|
||
Orig,
|
||
Outer,
|
||
POrd,
|
||
POrdering,
|
||
PntAsVec,
|
||
Repeat,
|
||
Rotate, Rotation, RotationMatrix, RotationWithTranslation, RotationTo,
|
||
Row,
|
||
Shape,
|
||
SquareMat,
|
||
ToHomogeneous,
|
||
Transform, Transformation,
|
||
Translate, Translation,
|
||
Transpose,
|
||
UniformSphereSample
|
||
};
|
||
|
||
pub use structs::{
|
||
Identity,
|
||
DMat,
|
||
DVec, DVec1, DVec2, DVec3, DVec4, DVec5, DVec6,
|
||
Iso2, Iso3, Iso4,
|
||
Mat1, Mat2, Mat3, Mat4,
|
||
Mat5, Mat6,
|
||
Rot2, Rot3, Rot4,
|
||
Vec0, Vec1, Vec2, Vec3, Vec4, Vec5, Vec6,
|
||
Pnt0, Pnt1, Pnt2, Pnt3, Pnt4, Pnt5, Pnt6,
|
||
Persp3, PerspMat3,
|
||
Ortho3, OrthoMat3,
|
||
Quat, UnitQuat
|
||
};
|
||
|
||
pub use linalg::{
|
||
qr,
|
||
householder_matrix,
|
||
cholesky,
|
||
hessenberg
|
||
};
|
||
|
||
mod structs;
|
||
mod traits;
|
||
mod linalg;
|
||
mod macros;
|
||
|
||
// mod lower_triangular;
|
||
// mod chol;
|
||
|
||
/// Change the input value to ensure it is on the range `[min, max]`.
|
||
#[inline(always)]
|
||
pub fn clamp<T: PartialOrd>(val: T, min: T, max: T) -> T {
|
||
if val > min {
|
||
if val < max {
|
||
val
|
||
}
|
||
else {
|
||
max
|
||
}
|
||
}
|
||
else {
|
||
min
|
||
}
|
||
}
|
||
|
||
/// Same as `cmp::max`.
|
||
#[inline(always)]
|
||
pub fn max<T: Ord>(a: T, b: T) -> T {
|
||
cmp::max(a, b)
|
||
}
|
||
|
||
/// Same as `cmp::min`.
|
||
#[inline(always)]
|
||
pub fn min<T: Ord>(a: T, b: T) -> T {
|
||
cmp::min(a, b)
|
||
}
|
||
|
||
/// Returns the infimum of `a` and `b`.
|
||
#[inline(always)]
|
||
pub fn inf<T: POrd>(a: &T, b: &T) -> T {
|
||
POrd::inf(a, b)
|
||
}
|
||
|
||
/// Returns the supremum of `a` and `b`.
|
||
#[inline(always)]
|
||
pub fn sup<T: POrd>(a: &T, b: &T) -> T {
|
||
POrd::sup(a, b)
|
||
}
|
||
|
||
/// Compare `a` and `b` using a partial ordering relation.
|
||
#[inline(always)]
|
||
pub fn partial_cmp<T: POrd>(a: &T, b: &T) -> POrdering {
|
||
POrd::partial_cmp(a, b)
|
||
}
|
||
|
||
/// Returns `true` iff `a` and `b` are comparable and `a < b`.
|
||
#[inline(always)]
|
||
pub fn partial_lt<T: POrd>(a: &T, b: &T) -> bool {
|
||
POrd::partial_lt(a, b)
|
||
}
|
||
|
||
/// Returns `true` iff `a` and `b` are comparable and `a <= b`.
|
||
#[inline(always)]
|
||
pub fn partial_le<T: POrd>(a: &T, b: &T) -> bool {
|
||
POrd::partial_le(a, b)
|
||
}
|
||
|
||
/// Returns `true` iff `a` and `b` are comparable and `a > b`.
|
||
#[inline(always)]
|
||
pub fn partial_gt<T: POrd>(a: &T, b: &T) -> bool {
|
||
POrd::partial_gt(a, b)
|
||
}
|
||
|
||
/// Returns `true` iff `a` and `b` are comparable and `a >= b`.
|
||
#[inline(always)]
|
||
pub fn partial_ge<T: POrd>(a: &T, b: &T) -> bool {
|
||
POrd::partial_ge(a, b)
|
||
}
|
||
|
||
/// Return the minimum of `a` and `b` if they are comparable.
|
||
#[inline(always)]
|
||
pub fn partial_min<'a, T: POrd>(a: &'a T, b: &'a T) -> Option<&'a T> {
|
||
POrd::partial_min(a, b)
|
||
}
|
||
|
||
/// Return the maximum of `a` and `b` if they are comparable.
|
||
#[inline(always)]
|
||
pub fn partial_max<'a, T: POrd>(a: &'a T, b: &'a T) -> Option<&'a T> {
|
||
POrd::partial_max(a, b)
|
||
}
|
||
|
||
/// Clamp `value` between `min` and `max`. Returns `None` if `value` is not comparable to
|
||
/// `min` or `max`.
|
||
#[inline(always)]
|
||
pub fn partial_clamp<'a, T: POrd>(value: &'a T, min: &'a T, max: &'a T) -> Option<&'a T> {
|
||
POrd::partial_clamp(value, min, max)
|
||
}
|
||
|
||
//
|
||
//
|
||
// Constructors
|
||
//
|
||
//
|
||
|
||
/// Create a special identity object.
|
||
///
|
||
/// Same as `Identity::new()`.
|
||
#[inline(always)]
|
||
pub fn identity() -> Identity {
|
||
Identity::new()
|
||
}
|
||
|
||
/// Create a zero-valued value.
|
||
///
|
||
/// This is the same as `std::num::zero()`.
|
||
#[inline(always)]
|
||
pub fn zero<T: Zero>() -> T {
|
||
Zero::zero()
|
||
}
|
||
|
||
/// Tests is a value is iqual to zero.
|
||
#[inline(always)]
|
||
pub fn is_zero<T: Zero>(val: &T) -> bool {
|
||
val.is_zero()
|
||
}
|
||
|
||
/// Create a one-valued value.
|
||
///
|
||
/// This is the same as `std::num::one()`.
|
||
#[inline(always)]
|
||
pub fn one<T: One>() -> T {
|
||
One::one()
|
||
}
|
||
|
||
//
|
||
//
|
||
// Geometry
|
||
//
|
||
//
|
||
|
||
/// Returns the trivial origin of an affine space.
|
||
#[inline(always)]
|
||
pub fn orig<P: Orig>() -> P {
|
||
Orig::orig()
|
||
}
|
||
|
||
/// Returns the center of two points.
|
||
#[inline]
|
||
pub fn center<N: BaseFloat, P: FloatPnt<N, V>, V: Copy + Norm<N>>(a: &P, b: &P) -> P {
|
||
let _2 = one::<N>() + one();
|
||
(*a + *b.as_vec()) / _2
|
||
}
|
||
|
||
/*
|
||
* FloatPnt
|
||
*/
|
||
/// Returns the distance between two points.
|
||
#[inline(always)]
|
||
pub fn dist<N: BaseFloat, P: FloatPnt<N, V>, V: Norm<N>>(a: &P, b: &P) -> N {
|
||
a.dist(b)
|
||
}
|
||
|
||
/// Returns the squared distance between two points.
|
||
#[inline(always)]
|
||
pub fn sqdist<N: BaseFloat, P: FloatPnt<N, V>, V: Norm<N>>(a: &P, b: &P) -> N {
|
||
a.sqdist(b)
|
||
}
|
||
|
||
/*
|
||
* Translation<V>
|
||
*/
|
||
|
||
/// Gets the translation applicable by `m`.
|
||
///
|
||
/// ```rust
|
||
/// extern crate nalgebra as na;
|
||
/// use na::{Vec3, Iso3};
|
||
///
|
||
/// fn main() {
|
||
/// let t = Iso3::new(Vec3::new(1.0f64, 1.0, 1.0), na::zero());
|
||
/// let trans = na::translation(&t);
|
||
///
|
||
/// assert!(trans == Vec3::new(1.0, 1.0, 1.0));
|
||
/// }
|
||
/// ```
|
||
#[inline(always)]
|
||
pub fn translation<V, M: Translation<V>>(m: &M) -> V {
|
||
m.translation()
|
||
}
|
||
|
||
/// Gets the inverse translation applicable by `m`.
|
||
///
|
||
/// ```rust
|
||
/// extern crate nalgebra as na;
|
||
/// use na::{Vec3, Iso3};
|
||
///
|
||
/// fn main() {
|
||
/// let t = Iso3::new(Vec3::new(1.0f64, 1.0, 1.0), na::zero());
|
||
/// let itrans = na::inv_translation(&t);
|
||
///
|
||
/// assert!(itrans == Vec3::new(-1.0, -1.0, -1.0));
|
||
/// }
|
||
/// ```
|
||
#[inline(always)]
|
||
pub fn inv_translation<V, M: Translation<V>>(m: &M) -> V {
|
||
m.inv_translation()
|
||
}
|
||
|
||
/// Applies the translation `v` to a copy of `m`.
|
||
#[inline(always)]
|
||
pub fn append_translation<V, M: Translation<V>>(m: &M, v: &V) -> M {
|
||
Translation::append_translation(m, v)
|
||
}
|
||
|
||
/*
|
||
* Translate<P>
|
||
*/
|
||
|
||
/// Applies a translation to a point.
|
||
///
|
||
/// ```rust
|
||
/// extern crate nalgebra as na;
|
||
/// use na::{Pnt3, Vec3, Iso3};
|
||
///
|
||
/// fn main() {
|
||
/// let t = Iso3::new(Vec3::new(1.0f64, 1.0, 1.0), na::zero());
|
||
/// let p = Pnt3::new(2.0, 2.0, 2.0);
|
||
///
|
||
/// let tp = na::translate(&t, &p);
|
||
///
|
||
/// assert!(tp == Pnt3::new(3.0, 3.0, 3.0))
|
||
/// }
|
||
/// ```
|
||
#[inline(always)]
|
||
pub fn translate<P, M: Translate<P>>(m: &M, p: &P) -> P {
|
||
m.translate(p)
|
||
}
|
||
|
||
/// Applies an inverse translation to a point.
|
||
///
|
||
/// ```rust
|
||
/// extern crate nalgebra as na;
|
||
/// use na::{Pnt3, Vec3, Iso3};
|
||
///
|
||
/// fn main() {
|
||
/// let t = Iso3::new(Vec3::new(1.0f64, 1.0, 1.0), na::zero());
|
||
/// let p = Pnt3::new(2.0, 2.0, 2.0);
|
||
///
|
||
/// let tp = na::inv_translate(&t, &p);
|
||
///
|
||
/// assert!(na::approx_eq(&tp, &Pnt3::new(1.0, 1.0, 1.0)))
|
||
/// }
|
||
#[inline(always)]
|
||
pub fn inv_translate<P, M: Translate<P>>(m: &M, p: &P) -> P {
|
||
m.inv_translate(p)
|
||
}
|
||
|
||
/*
|
||
* Rotation<V>
|
||
*/
|
||
|
||
/// Gets the rotation applicable by `m`.
|
||
///
|
||
/// ```rust
|
||
/// extern crate nalgebra as na;
|
||
/// use na::{Vec3, Rot3};
|
||
///
|
||
/// fn main() {
|
||
/// let t = Rot3::new(Vec3::new(1.0f64, 1.0, 1.0));
|
||
///
|
||
/// assert!(na::approx_eq(&na::rotation(&t), &Vec3::new(1.0, 1.0, 1.0)));
|
||
/// }
|
||
/// ```
|
||
#[inline(always)]
|
||
pub fn rotation<V, M: Rotation<V>>(m: &M) -> V {
|
||
m.rotation()
|
||
}
|
||
|
||
|
||
/// Gets the inverse rotation applicable by `m`.
|
||
///
|
||
/// ```rust
|
||
/// extern crate nalgebra as na;
|
||
/// use na::{Vec3, Rot3};
|
||
///
|
||
/// fn main() {
|
||
/// let t = Rot3::new(Vec3::new(1.0f64, 1.0, 1.0));
|
||
///
|
||
/// assert!(na::approx_eq(&na::inv_rotation(&t), &Vec3::new(-1.0, -1.0, -1.0)));
|
||
/// }
|
||
/// ```
|
||
#[inline(always)]
|
||
pub fn inv_rotation<V, M: Rotation<V>>(m: &M) -> V {
|
||
m.inv_rotation()
|
||
}
|
||
|
||
// FIXME: this example is a bit shity
|
||
/// Applies the rotation `v` to a copy of `m`.
|
||
///
|
||
/// ```rust
|
||
/// extern crate nalgebra as na;
|
||
/// use na::{Vec3, Rot3};
|
||
///
|
||
/// fn main() {
|
||
/// let t = Rot3::new(Vec3::new(0.0f64, 0.0, 0.0));
|
||
/// let v = Vec3::new(1.0, 1.0, 1.0);
|
||
/// let rt = na::append_rotation(&t, &v);
|
||
///
|
||
/// assert!(na::approx_eq(&na::rotation(&rt), &Vec3::new(1.0, 1.0, 1.0)))
|
||
/// }
|
||
/// ```
|
||
#[inline(always)]
|
||
pub fn append_rotation<V, M: Rotation<V>>(m: &M, v: &V) -> M {
|
||
Rotation::append_rotation(m, v)
|
||
}
|
||
|
||
// FIXME: this example is a bit shity
|
||
/// Pre-applies the rotation `v` to a copy of `m`.
|
||
///
|
||
/// ```rust
|
||
/// extern crate nalgebra as na;
|
||
/// use na::{Vec3, Rot3};
|
||
///
|
||
/// fn main() {
|
||
/// let t = Rot3::new(Vec3::new(0.0f64, 0.0, 0.0));
|
||
/// let v = Vec3::new(1.0, 1.0, 1.0);
|
||
/// let rt = na::prepend_rotation(&t, &v);
|
||
///
|
||
/// assert!(na::approx_eq(&na::rotation(&rt), &Vec3::new(1.0, 1.0, 1.0)))
|
||
/// }
|
||
/// ```
|
||
#[inline(always)]
|
||
pub fn prepend_rotation<V, M: Rotation<V>>(m: &M, v: &V) -> M {
|
||
Rotation::prepend_rotation(m, v)
|
||
}
|
||
|
||
/*
|
||
* Rotate<V>
|
||
*/
|
||
|
||
/// Applies a rotation to a vector.
|
||
///
|
||
/// ```rust
|
||
/// extern crate nalgebra as na;
|
||
/// use na::{BaseFloat, Rot3, Vec3};
|
||
///
|
||
/// fn main() {
|
||
/// let t = Rot3::new(Vec3::new(0.0f64, 0.0, 0.5 * <f64 as BaseFloat>::pi()));
|
||
/// let v = Vec3::new(1.0, 0.0, 0.0);
|
||
///
|
||
/// let tv = na::rotate(&t, &v);
|
||
///
|
||
/// assert!(na::approx_eq(&tv, &Vec3::new(0.0, 1.0, 0.0)))
|
||
/// }
|
||
/// ```
|
||
#[inline(always)]
|
||
pub fn rotate<V, M: Rotate<V>>(m: &M, v: &V) -> V {
|
||
m.rotate(v)
|
||
}
|
||
|
||
|
||
/// Applies an inverse rotation to a vector.
|
||
///
|
||
/// ```rust
|
||
/// extern crate nalgebra as na;
|
||
/// use na::{BaseFloat, Rot3, Vec3};
|
||
///
|
||
/// fn main() {
|
||
/// let t = Rot3::new(Vec3::new(0.0f64, 0.0, 0.5 * <f64 as BaseFloat>::pi()));
|
||
/// let v = Vec3::new(1.0, 0.0, 0.0);
|
||
///
|
||
/// let tv = na::inv_rotate(&t, &v);
|
||
///
|
||
/// assert!(na::approx_eq(&tv, &Vec3::new(0.0, -1.0, 0.0)))
|
||
/// }
|
||
/// ```
|
||
#[inline(always)]
|
||
pub fn inv_rotate<V, M: Rotate<V>>(m: &M, v: &V) -> V {
|
||
m.inv_rotate(v)
|
||
}
|
||
|
||
/*
|
||
* RotationWithTranslation<LV, AV>
|
||
*/
|
||
|
||
/// Rotates a copy of `m` by `amount` using `center` as the pivot point.
|
||
#[inline(always)]
|
||
pub fn append_rotation_wrt_point<LV: Neg<Output = LV> + Copy,
|
||
AV,
|
||
M: RotationWithTranslation<LV, AV>>(
|
||
m: &M,
|
||
amount: &AV,
|
||
center: &LV) -> M {
|
||
RotationWithTranslation::append_rotation_wrt_point(m, amount, center)
|
||
}
|
||
|
||
/// Rotates a copy of `m` by `amount` using `m.translation()` as the pivot point.
|
||
#[inline(always)]
|
||
pub fn append_rotation_wrt_center<LV: Neg<Output = LV> + Copy,
|
||
AV,
|
||
M: RotationWithTranslation<LV, AV>>(
|
||
m: &M,
|
||
amount: &AV) -> M {
|
||
RotationWithTranslation::append_rotation_wrt_center(m, amount)
|
||
}
|
||
|
||
/*
|
||
* RotationTo
|
||
*/
|
||
/// Computes the angle of the rotation needed to transfom `a` to `b`.
|
||
#[inline(always)]
|
||
pub fn angle_between<V: RotationTo>(a: &V, b: &V) -> V::AngleType {
|
||
a.angle_to(b)
|
||
}
|
||
|
||
/// Computes the rotation needed to transform `a` to `b`.
|
||
#[inline(always)]
|
||
pub fn rotation_between<V: RotationTo>(a: &V, b: &V) -> V::DeltaRotationType {
|
||
a.rotation_to(b)
|
||
}
|
||
|
||
/*
|
||
* RotationMatrix<LV, AV, R>
|
||
*/
|
||
|
||
/// Builds a rotation matrix from `r`.
|
||
#[inline(always)]
|
||
pub fn to_rot_mat<N, LV, AV, R, M>(r: &R) -> M
|
||
where R: RotationMatrix<N, LV, AV, Output = M>,
|
||
M: SquareMat<N, LV> + Rotation<AV> + Copy,
|
||
LV: Mul<M, Output = LV>
|
||
{
|
||
// FIXME: rust-lang/rust#20413
|
||
r.to_rot_mat()
|
||
}
|
||
|
||
/*
|
||
* AbsoluteRotate<V>
|
||
*/
|
||
|
||
/// Applies a rotation using the absolute values of its components.
|
||
#[inline(always)]
|
||
pub fn absolute_rotate<V, M: AbsoluteRotate<V>>(m: &M, v: &V) -> V {
|
||
m.absolute_rotate(v)
|
||
}
|
||
|
||
/*
|
||
* Transformation<T>
|
||
*/
|
||
|
||
/// Gets the transformation applicable by `m`.
|
||
#[inline(always)]
|
||
pub fn transformation<T, M: Transformation<T>>(m: &M) -> T {
|
||
m.transformation()
|
||
}
|
||
|
||
/// Gets the inverse transformation applicable by `m`.
|
||
#[inline(always)]
|
||
pub fn inv_transformation<T, M: Transformation<T>>(m: &M) -> T {
|
||
m.inv_transformation()
|
||
}
|
||
|
||
/// Gets a transformed copy of `m`.
|
||
#[inline(always)]
|
||
pub fn append_transformation<T, M: Transformation<T>>(m: &M, t: &T) -> M {
|
||
Transformation::append_transformation(m, t)
|
||
}
|
||
|
||
/*
|
||
* Transform<V>
|
||
*/
|
||
|
||
/// Applies a transformation to a vector.
|
||
#[inline(always)]
|
||
pub fn transform<V, M: Transform<V>>(m: &M, v: &V) -> V {
|
||
m.transform(v)
|
||
}
|
||
|
||
/// Applies an inverse transformation to a vector.
|
||
#[inline(always)]
|
||
pub fn inv_transform<V, M: Transform<V>>(m: &M, v: &V) -> V {
|
||
m.inv_transform(v)
|
||
}
|
||
|
||
/*
|
||
* Dot<N>
|
||
*/
|
||
|
||
/// Computes the dot product of two vectors.
|
||
#[inline(always)]
|
||
pub fn dot<V: Dot<N>, N>(a: &V, b: &V) -> N {
|
||
Dot::dot(a, b)
|
||
}
|
||
|
||
/*
|
||
* Norm<N>
|
||
*/
|
||
|
||
/// Computes the L2 norm of a vector.
|
||
#[inline(always)]
|
||
pub fn norm<V: Norm<N>, N: BaseFloat>(v: &V) -> N {
|
||
Norm::norm(v)
|
||
}
|
||
|
||
/// Computes the squared L2 norm of a vector.
|
||
#[inline(always)]
|
||
pub fn sqnorm<V: Norm<N>, N: BaseFloat>(v: &V) -> N {
|
||
Norm::sqnorm(v)
|
||
}
|
||
|
||
/// Gets the normalized version of a vector.
|
||
#[inline(always)]
|
||
pub fn normalize<V: Norm<N>, N: BaseFloat>(v: &V) -> V {
|
||
Norm::normalize(v)
|
||
}
|
||
|
||
/*
|
||
* Det<N>
|
||
*/
|
||
/// Computes the determinant of a square matrix.
|
||
#[inline(always)]
|
||
pub fn det<M: Det<N>, N>(m: &M) -> N {
|
||
Det::det(m)
|
||
}
|
||
|
||
/*
|
||
* Cross<V>
|
||
*/
|
||
|
||
/// Computes the cross product of two vectors.
|
||
#[inline(always)]
|
||
pub fn cross<LV: Cross>(a: &LV, b: &LV) -> LV::CrossProductType {
|
||
Cross::cross(a, b)
|
||
}
|
||
|
||
/*
|
||
* CrossMatrix<M>
|
||
*/
|
||
|
||
/// Given a vector, computes the matrix which, when multiplied by another vector, computes a cross
|
||
/// product.
|
||
#[inline(always)]
|
||
pub fn cross_matrix<V: CrossMatrix<M>, M>(v: &V) -> M {
|
||
CrossMatrix::cross_matrix(v)
|
||
}
|
||
|
||
/*
|
||
* ToHomogeneous<U>
|
||
*/
|
||
|
||
/// Converts a matrix or vector to homogeneous coordinates.
|
||
#[inline(always)]
|
||
pub fn to_homogeneous<M: ToHomogeneous<Res>, Res>(m: &M) -> Res {
|
||
ToHomogeneous::to_homogeneous(m)
|
||
}
|
||
|
||
/*
|
||
* FromHomogeneous<U>
|
||
*/
|
||
|
||
/// Converts a matrix or vector from homogeneous coordinates.
|
||
///
|
||
/// w-normalization is appied.
|
||
#[inline(always)]
|
||
pub fn from_homogeneous<M, Res: FromHomogeneous<M>>(m: &M) -> Res {
|
||
FromHomogeneous::from(m)
|
||
}
|
||
|
||
/*
|
||
* UniformSphereSample
|
||
*/
|
||
|
||
/// Samples the unit sphere living on the dimension as the samples types.
|
||
///
|
||
/// The number of sampling point is implementation-specific. It is always uniform.
|
||
#[inline(always)]
|
||
pub fn sample_sphere<V: UniformSphereSample, F: FnMut(V)>(f: F) {
|
||
UniformSphereSample::sample(f)
|
||
}
|
||
|
||
//
|
||
//
|
||
// Operations
|
||
//
|
||
//
|
||
|
||
/*
|
||
* AproxEq<N>
|
||
*/
|
||
/// Tests approximate equality.
|
||
#[inline(always)]
|
||
pub fn approx_eq<T: ApproxEq<N>, N>(a: &T, b: &T) -> bool {
|
||
ApproxEq::approx_eq(a, b)
|
||
}
|
||
|
||
/// Tests approximate equality using a custom epsilon.
|
||
#[inline(always)]
|
||
pub fn approx_eq_eps<T: ApproxEq<N>, N>(a: &T, b: &T, eps: &N) -> bool {
|
||
ApproxEq::approx_eq_eps(a, b, eps)
|
||
}
|
||
|
||
|
||
/*
|
||
* Absolute<A>
|
||
*/
|
||
|
||
/// Computes a component-wise absolute value.
|
||
#[inline(always)]
|
||
pub fn abs<M: Absolute<Res>, Res>(m: &M) -> Res {
|
||
Absolute::abs(m)
|
||
}
|
||
|
||
/*
|
||
* Inv
|
||
*/
|
||
|
||
/// Gets an inverted copy of a matrix.
|
||
#[inline(always)]
|
||
pub fn inv<M: Inv>(m: &M) -> Option<M> {
|
||
Inv::inv(m)
|
||
}
|
||
|
||
/*
|
||
* Transpose
|
||
*/
|
||
|
||
/// Gets a transposed copy of a matrix.
|
||
#[inline(always)]
|
||
pub fn transpose<M: Transpose>(m: &M) -> M {
|
||
Transpose::transpose(m)
|
||
}
|
||
|
||
/*
|
||
* Outer<M>
|
||
*/
|
||
|
||
/// Computes the outer product of two vectors.
|
||
#[inline(always)]
|
||
pub fn outer<V: Outer>(a: &V, b: &V) -> V::OuterProductType {
|
||
Outer::outer(a, b)
|
||
}
|
||
|
||
/*
|
||
* Cov<M>
|
||
*/
|
||
|
||
/// Computes the covariance of a set of observations.
|
||
#[inline(always)]
|
||
pub fn cov<M: Cov<Res>, Res>(observations: &M) -> Res {
|
||
Cov::cov(observations)
|
||
}
|
||
|
||
/*
|
||
* Mean<N>
|
||
*/
|
||
|
||
/// Computes the mean of a set of observations.
|
||
#[inline(always)]
|
||
pub fn mean<N, M: Mean<N>>(observations: &M) -> N {
|
||
Mean::mean(observations)
|
||
}
|
||
|
||
/*
|
||
* EigenQR<N, V>
|
||
*/
|
||
/// Computes the eigenvalues and eigenvectors of a square matrix usin the QR algorithm.
|
||
#[inline(always)]
|
||
pub fn eigen_qr<N, V, M>(m: &M, eps: &N, niter: usize) -> (M, V)
|
||
where V: Mul<M, Output = V>,
|
||
M: EigenQR<N, V> {
|
||
EigenQR::eigen_qr(m, eps, niter)
|
||
}
|
||
|
||
//
|
||
//
|
||
// Structure
|
||
//
|
||
//
|
||
|
||
/*
|
||
* Eye
|
||
*/
|
||
/// Construct the identity matrix for a given dimension
|
||
#[inline(always)]
|
||
pub fn new_identity<M: Eye>(dim: usize) -> M {
|
||
Eye::new_identity(dim)
|
||
}
|
||
|
||
|
||
/*
|
||
* Repeat
|
||
*/
|
||
/// Create an object by repeating a value.
|
||
///
|
||
/// Same as `Identity::new()`.
|
||
#[inline(always)]
|
||
pub fn repeat<N, T: Repeat<N>>(val: N) -> T {
|
||
Repeat::repeat(val)
|
||
}
|
||
|
||
/*
|
||
* Basis
|
||
*/
|
||
|
||
/// Computes the canonical basis for a given dimension.
|
||
#[inline(always)]
|
||
pub fn canonical_basis<V: Basis, F: FnMut(V) -> bool>(f: F) {
|
||
Basis::canonical_basis(f)
|
||
}
|
||
|
||
/// Computes the basis of the orthonormal subspace of a given vector.
|
||
#[inline(always)]
|
||
pub fn orthonormal_subspace_basis<V: Basis, F: FnMut(V) -> bool>(v: &V, f: F) {
|
||
Basis::orthonormal_subspace_basis(v, f)
|
||
}
|
||
|
||
/// Gets the (0-based) i-th element of the canonical basis of V.
|
||
#[inline]
|
||
pub fn canonical_basis_element<V: Basis>(i: usize) -> Option<V> {
|
||
Basis::canonical_basis_element(i)
|
||
}
|
||
|
||
/*
|
||
* Row<R>
|
||
*/
|
||
|
||
/*
|
||
* Col<C>
|
||
*/
|
||
|
||
/*
|
||
* Diag<V>
|
||
*/
|
||
/// Gets the diagonal of a square matrix.
|
||
#[inline(always)]
|
||
pub fn diag<M: Diag<V>, V>(m: &M) -> V {
|
||
m.diag()
|
||
}
|
||
|
||
/*
|
||
* Dim
|
||
*/
|
||
/// Gets the dimension an object lives in.
|
||
///
|
||
/// Same as `Dim::dim::(None::<V>)`.
|
||
#[inline(always)]
|
||
pub fn dim<V: Dim>() -> usize {
|
||
Dim::dim(None::<V>)
|
||
}
|
||
|
||
/// Gets the indexable range of an object.
|
||
#[inline(always)]
|
||
pub fn shape<V: Shape<I>, I>(v: &V) -> I {
|
||
v.shape()
|
||
}
|
||
|
||
/*
|
||
* Cast<T>
|
||
*/
|
||
/// Converts an object from one type to another.
|
||
///
|
||
/// For primitive types, this is the same as the `as` keywords.
|
||
/// The following properties are preserved by a cast:
|
||
///
|
||
/// * Type-level geometric invariants cannot be broken (eg. a cast from Rot3<f64> to Rot3<i64> is
|
||
/// not possible)
|
||
/// * A cast to a type with more type-level invariants cannot be done (eg. a cast from Mat<f64> to
|
||
/// Rot3<f64> is not possible)
|
||
/// * For primitive types an unbounded cast is done using the `as` keyword (this is different from
|
||
/// the standard library which makes bound-checking to ensure eg. that a i64 is not out of the
|
||
/// range of an i32 when a cast from i64 to i32 is done).
|
||
/// * A cast does not affect the dimension of an algebraic object. Note that this prevents an
|
||
/// isometric transform to be cast to a raw matrix. Use `to_homogeneous` for that special purpose.
|
||
#[inline(always)]
|
||
pub fn cast<T, U: Cast<T>>(t: T) -> U {
|
||
Cast::from(t)
|
||
}
|
||
|
||
/*
|
||
* Indexable
|
||
*/
|