forked from M-Labs/nalgebra
398 lines
13 KiB
Rust
398 lines
13 KiB
Rust
#[cfg(feature = "serde-serialize")]
|
||
use serde;
|
||
|
||
use num_complex::Complex;
|
||
use std::ops::MulAssign;
|
||
|
||
use alga::general::Real;
|
||
use core::{MatrixN, VectorN, DefaultAllocator, Matrix2, Vector2, SquareMatrix};
|
||
use dimension::{Dim, DimSub, DimDiff, U1, U2};
|
||
use storage::Storage;
|
||
use allocator::Allocator;
|
||
|
||
use linalg::givens;
|
||
use linalg::SymmetricTridiagonal;
|
||
use geometry::UnitComplex;
|
||
|
||
|
||
/// Eigendecomposition of a symmetric matrix.
|
||
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
||
#[cfg_attr(feature = "serde-serialize",
|
||
serde(bound(serialize =
|
||
"DefaultAllocator: Allocator<N, D, D> +
|
||
Allocator<N, D>,
|
||
VectorN<N, D>: serde::Serialize,
|
||
MatrixN<N, D>: serde::Serialize")))]
|
||
#[cfg_attr(feature = "serde-serialize",
|
||
serde(bound(deserialize =
|
||
"DefaultAllocator: Allocator<N, D, D> +
|
||
Allocator<N, D>,
|
||
VectorN<N, D>: serde::Deserialize<'de>,
|
||
MatrixN<N, D>: serde::Deserialize<'de>")))]
|
||
#[derive(Clone, Debug)]
|
||
pub struct SymmetricEigen<N: Real, D: Dim>
|
||
where DefaultAllocator: Allocator<N, D, D> +
|
||
Allocator<N, D> {
|
||
/// The eigenvectors of the decomposed matrix.
|
||
pub eigenvectors: MatrixN<N, D>,
|
||
|
||
/// The unsorted eigenvalues of the decomposed matrix.
|
||
pub eigenvalues: VectorN<N, D>
|
||
}
|
||
|
||
impl<N: Real, D: Dim> Copy for SymmetricEigen<N, D>
|
||
where DefaultAllocator: Allocator<N, D, D> +
|
||
Allocator<N, D>,
|
||
MatrixN<N, D>: Copy,
|
||
VectorN<N, D>: Copy { }
|
||
|
||
impl<N: Real, D: Dim> SymmetricEigen<N, D>
|
||
where DefaultAllocator: Allocator<N, D, D> +
|
||
Allocator<N, D> {
|
||
/// Computes the eigendecomposition of the given symmetric matrix.
|
||
///
|
||
/// Only the lower-triangular parts (including its diagonal) of `m` is read.
|
||
pub fn new(m: MatrixN<N, D>) -> Self
|
||
where D: DimSub<U1>,
|
||
DefaultAllocator: Allocator<N, DimDiff<D, U1>> {
|
||
|
||
Self::try_new(m, N::default_epsilon(), 0).unwrap()
|
||
}
|
||
|
||
/// Computes the eigendecomposition of the given symmetric matrix with user-specified
|
||
/// convergence parameters.
|
||
///
|
||
/// Only the lower-triangular part (including its diagonal) of `m` is read.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `eps` − tolerance used to determine when a value converged to 0.
|
||
/// * `max_niter` − maximum total number of iterations performed by the algorithm. If this
|
||
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
|
||
/// continues indefinitely until convergence.
|
||
pub fn try_new(m: MatrixN<N, D>, eps: N, max_niter: usize) -> Option<Self>
|
||
where D: DimSub<U1>,
|
||
DefaultAllocator: Allocator<N, DimDiff<D, U1>> {
|
||
Self::do_decompose(m, true, eps, max_niter).map(|(vals, vecs)| {
|
||
SymmetricEigen {
|
||
eigenvectors: vecs.unwrap(),
|
||
eigenvalues: vals
|
||
}
|
||
})
|
||
}
|
||
|
||
fn do_decompose(mut m: MatrixN<N, D>, eigenvectors: bool, eps: N, max_niter: usize)
|
||
-> Option<(VectorN<N, D>, Option<MatrixN<N, D>>)>
|
||
where D: DimSub<U1>,
|
||
DefaultAllocator: Allocator<N, DimDiff<D, U1>> {
|
||
|
||
assert!(m.is_square(), "Unable to compute the eigendecomposition of a non-square matrix.");
|
||
let dim = m.nrows();
|
||
|
||
let m_amax = m.amax();
|
||
|
||
if !m_amax.is_zero() {
|
||
m /= m_amax;
|
||
}
|
||
|
||
let (mut q, mut diag, mut off_diag);
|
||
|
||
if eigenvectors {
|
||
let res = SymmetricTridiagonal::new(m).unpack();
|
||
q = Some(res.0);
|
||
diag = res.1;
|
||
off_diag = res.2;
|
||
}
|
||
else {
|
||
let res = SymmetricTridiagonal::new(m).unpack_tridiagonal();
|
||
q = None;
|
||
diag = res.0;
|
||
off_diag = res.1;
|
||
}
|
||
|
||
if dim == 1 {
|
||
diag *= m_amax;
|
||
return Some((diag, q));
|
||
}
|
||
|
||
let mut niter = 0;
|
||
let (mut start, mut end) = Self::delimit_subproblem(&diag, &mut off_diag, dim - 1, eps);
|
||
|
||
while end != start {
|
||
let subdim = end - start + 1;
|
||
|
||
if subdim > 2 {
|
||
let m = end - 1;
|
||
let n = end;
|
||
|
||
let mut v = Vector2::new(
|
||
diag[start] - wilkinson_shift(diag[m], diag[n], off_diag[m]),
|
||
off_diag[start]);
|
||
|
||
|
||
for i in start .. n {
|
||
let j = i + 1;
|
||
|
||
if let Some((rot, norm)) = givens::cancel_y(&v) {
|
||
if i > start {
|
||
// Not the first iteration.
|
||
off_diag[i - 1] = norm;
|
||
}
|
||
|
||
let mii = diag[i];
|
||
let mjj = diag[j];
|
||
let mij = off_diag[i];
|
||
|
||
let cc = rot.cos_angle() * rot.cos_angle();
|
||
let ss = rot.sin_angle() * rot.sin_angle();
|
||
let cs = rot.cos_angle() * rot.sin_angle();
|
||
|
||
let b = cs * ::convert(2.0) * mij;
|
||
|
||
diag[i] = (cc * mii + ss * mjj) - b;
|
||
diag[j] = (ss * mii + cc * mjj) + b;
|
||
off_diag[i] = cs * (mii - mjj) + mij * (cc - ss);
|
||
|
||
if i != n - 1 {
|
||
v.x = off_diag[i];
|
||
v.y = -rot.sin_angle() * off_diag[i + 1];
|
||
off_diag[i + 1] *= rot.cos_angle();
|
||
}
|
||
|
||
if let Some(ref mut q) = q {
|
||
rot.inverse().rotate_rows(&mut q.fixed_columns_mut::<U2>(i));
|
||
}
|
||
}
|
||
else {
|
||
break;
|
||
}
|
||
}
|
||
|
||
if off_diag[m].abs() <= eps * (diag[m].abs() + diag[n].abs()) {
|
||
end -= 1;
|
||
}
|
||
}
|
||
else if subdim == 2 {
|
||
let m = Matrix2::new(diag[start], off_diag[start],
|
||
off_diag[start], diag[start + 1]);
|
||
let eigvals = m.eigenvalues().unwrap();
|
||
let basis = Vector2::new(eigvals.x - diag[start + 1], off_diag[start]);
|
||
|
||
diag[start + 0] = eigvals[0];
|
||
diag[start + 1] = eigvals[1];
|
||
|
||
if let Some(ref mut q) = q {
|
||
if let Some(basis) = basis.try_normalize(eps) {
|
||
let rot = UnitComplex::new_unchecked(Complex::new(basis.x, basis.y));
|
||
rot.rotate_rows(&mut q.fixed_columns_mut::<U2>(start));
|
||
}
|
||
}
|
||
|
||
end -= 1;
|
||
}
|
||
|
||
// Re-delimit the suproblem in case some decoupling occured.
|
||
let sub = Self::delimit_subproblem(&diag, &mut off_diag, end, eps);
|
||
|
||
start = sub.0;
|
||
end = sub.1;
|
||
|
||
niter += 1;
|
||
if niter == max_niter {
|
||
return None;
|
||
}
|
||
}
|
||
|
||
diag *= m_amax;
|
||
|
||
Some((diag, q))
|
||
}
|
||
|
||
fn delimit_subproblem(diag: &VectorN<N, D>,
|
||
off_diag: &mut VectorN<N, DimDiff<D, U1>>,
|
||
end: usize,
|
||
eps: N)
|
||
-> (usize, usize)
|
||
where D: DimSub<U1>,
|
||
DefaultAllocator: Allocator<N, DimDiff<D, U1>> {
|
||
|
||
let mut n = end;
|
||
|
||
while n > 0 {
|
||
let m = n - 1;
|
||
|
||
if off_diag[m].abs() > eps * (diag[n].abs() + diag[m].abs()) {
|
||
break;
|
||
}
|
||
|
||
n -= 1;
|
||
}
|
||
|
||
if n == 0 {
|
||
return (0, 0);
|
||
}
|
||
|
||
let mut new_start = n - 1;
|
||
while new_start > 0 {
|
||
let m = new_start - 1;
|
||
|
||
if off_diag[m].is_zero() ||
|
||
off_diag[m].abs() <= eps * (diag[new_start].abs() + diag[m].abs()) {
|
||
off_diag[m] = N::zero();
|
||
break;
|
||
}
|
||
|
||
new_start -= 1;
|
||
}
|
||
|
||
(new_start, n)
|
||
}
|
||
|
||
/// Rebuild the original matrix.
|
||
///
|
||
/// This is useful if some of the eigenvalues have been manually modified.
|
||
pub fn recompose(&self) -> MatrixN<N, D> {
|
||
let mut u_t = self.eigenvectors.clone();
|
||
for i in 0 .. self.eigenvalues.len() {
|
||
let val = self.eigenvalues[i];
|
||
u_t.column_mut(i).mul_assign(val);
|
||
}
|
||
u_t.transpose_mut();
|
||
&self.eigenvectors * u_t
|
||
}
|
||
}
|
||
|
||
/// Computes the wilkinson shift, i.e., the 2x2 symmetric matrix eigenvalue to its tailing
|
||
/// component `tnn`.
|
||
///
|
||
/// The inputs are interpreted as the 2x2 matrix:
|
||
/// tmm tmn
|
||
/// tmn tnn
|
||
pub fn wilkinson_shift<N: Real>(tmm: N, tnn: N, tmn: N) -> N {
|
||
let sq_tmn = tmn * tmn;
|
||
if !sq_tmn.is_zero() {
|
||
// We have the guarantee thet the denominator won't be zero.
|
||
let d = (tmm - tnn) * ::convert(0.5);
|
||
tnn - sq_tmn / (d + d.signum() * (d * d + sq_tmn).sqrt())
|
||
}
|
||
else {
|
||
tnn
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
*
|
||
* Computations of eigenvalues for symmetric matrices.
|
||
*
|
||
*/
|
||
impl<N: Real, D: DimSub<U1>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||
where DefaultAllocator: Allocator<N, D, D> +
|
||
Allocator<N, D> +
|
||
Allocator<N, DimDiff<D, U1>> {
|
||
|
||
/// Computes the eigendecomposition of this symmetric matrix.
|
||
///
|
||
/// Only the lower-triangular part (including the diagonal) of `m` is read.
|
||
pub fn symmetric_eigen(self) -> SymmetricEigen<N, D> {
|
||
SymmetricEigen::new(self.into_owned())
|
||
}
|
||
|
||
/// Computes the eigendecomposition of the given symmetric matrix with user-specified
|
||
/// convergence parameters.
|
||
///
|
||
/// Only the lower-triangular part (including the diagonal) of `m` is read.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `eps` − tolerance used to determine when a value converged to 0.
|
||
/// * `max_niter` − maximum total number of iterations performed by the algorithm. If this
|
||
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
|
||
/// continues indefinitely until convergence.
|
||
pub fn try_symmetric_eigen(self, eps: N, max_niter: usize) -> Option<SymmetricEigen<N, D>> {
|
||
SymmetricEigen::try_new(self.into_owned(), eps, max_niter)
|
||
}
|
||
|
||
/// Computes the eigenvalues of this symmetric matrix.
|
||
///
|
||
/// Only the lower-triangular part of the matrix is read.
|
||
pub fn symmetric_eigenvalues(&self) -> VectorN<N, D> {
|
||
SymmetricEigen::do_decompose(self.clone_owned(), false, N::default_epsilon(), 0).unwrap().0
|
||
}
|
||
}
|
||
|
||
|
||
|
||
|
||
|
||
#[cfg(test)]
|
||
mod test {
|
||
use core::Matrix2;
|
||
|
||
fn expected_shift(m: Matrix2<f64>) -> f64 {
|
||
let vals = m.eigenvalues().unwrap();
|
||
|
||
if (vals.x - m.m22).abs() < (vals.y - m.m22).abs() {
|
||
vals.x
|
||
} else {
|
||
vals.y
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn wilkinson_shift_random() {
|
||
for _ in 0 .. 1000 {
|
||
let m = Matrix2::new_random();
|
||
let m = m * m.transpose();
|
||
|
||
let expected = expected_shift(m);
|
||
let computed = super::wilkinson_shift(m.m11, m.m22, m.m12);
|
||
println!("{} {}", expected, computed);
|
||
assert!(relative_eq!(expected, computed, epsilon = 1.0e-7));
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn wilkinson_shift_zero() {
|
||
let m = Matrix2::new(0.0, 0.0,
|
||
0.0, 0.0);
|
||
assert!(relative_eq!(expected_shift(m), super::wilkinson_shift(m.m11, m.m22, m.m12)));
|
||
}
|
||
|
||
|
||
#[test]
|
||
fn wilkinson_shift_zero_diagonal() {
|
||
let m = Matrix2::new(0.0, 42.0,
|
||
42.0, 0.0);
|
||
assert!(relative_eq!(expected_shift(m), super::wilkinson_shift(m.m11, m.m22, m.m12)));
|
||
}
|
||
|
||
#[test]
|
||
fn wilkinson_shift_zero_off_diagonal() {
|
||
let m = Matrix2::new(42.0, 0.0,
|
||
0.0, 64.0);
|
||
assert!(relative_eq!(expected_shift(m), super::wilkinson_shift(m.m11, m.m22, m.m12)));
|
||
}
|
||
|
||
#[test]
|
||
fn wilkinson_shift_zero_trace() {
|
||
let m = Matrix2::new(42.0, 20.0,
|
||
20.0, -42.0);
|
||
assert!(relative_eq!(expected_shift(m), super::wilkinson_shift(m.m11, m.m22, m.m12)));
|
||
}
|
||
|
||
#[test]
|
||
fn wilkinson_shift_zero_diag_diff_and_zero_off_diagonal() {
|
||
let m = Matrix2::new(42.0, 0.0,
|
||
0.0, 42.0);
|
||
assert!(relative_eq!(expected_shift(m), super::wilkinson_shift(m.m11, m.m22, m.m12)));
|
||
}
|
||
|
||
#[test]
|
||
fn wilkinson_shift_zero_det() {
|
||
let m = Matrix2::new(2.0, 4.0,
|
||
4.0, 8.0);
|
||
assert!(relative_eq!(expected_shift(m), super::wilkinson_shift(m.m11, m.m22, m.m12)));
|
||
}
|
||
}
|