nalgebra/src/geometry/quaternion_conversion.rs
Crozet Sébastien 67603be6ed Fix the PartialEq impl for quaternions.
The double-covering property should only be taken into account for `UnitQuaternion` instead of `Quaternion` itself.
2020-12-18 11:38:33 +01:00

430 lines
11 KiB
Rust

use num::Zero;
use simba::scalar::{RealField, SubsetOf, SupersetOf};
use simba::simd::{PrimitiveSimdValue, SimdRealField, SimdValue};
#[cfg(feature = "mint")]
use mint;
use crate::base::dimension::U3;
use crate::base::{Matrix3, Matrix4, Scalar, Vector4};
use crate::geometry::{
AbstractRotation, Isometry, Quaternion, Rotation, Rotation3, Similarity, SuperTCategoryOf,
TAffine, Transform, Translation, UnitQuaternion,
};
/*
* This file provides the following conversions:
* =============================================
*
* Quaternion -> Quaternion
* UnitQuaternion -> UnitQuaternion
* UnitQuaternion -> Rotation<U3>
* UnitQuaternion -> Isometry<U3>
* UnitQuaternion -> Similarity<U3>
* UnitQuaternion -> Transform<U3>
* UnitQuaternion -> Matrix<U4> (homogeneous)
*
* mint::Quaternion <-> Quaternion
* UnitQuaternion -> mint::Quaternion
*
* NOTE:
* UnitQuaternion -> Quaternion is already provided by: Unit<T> -> T
*/
impl<N1, N2> SubsetOf<Quaternion<N2>> for Quaternion<N1>
where
N1: SimdRealField,
N2: SimdRealField + SupersetOf<N1>,
{
#[inline]
fn to_superset(&self) -> Quaternion<N2> {
Quaternion::from(self.coords.to_superset())
}
#[inline]
fn is_in_subset(q: &Quaternion<N2>) -> bool {
crate::is_convertible::<_, Vector4<N1>>(&q.coords)
}
#[inline]
fn from_superset_unchecked(q: &Quaternion<N2>) -> Self {
Self {
coords: q.coords.to_subset_unchecked(),
}
}
}
impl<N1, N2> SubsetOf<UnitQuaternion<N2>> for UnitQuaternion<N1>
where
N1: SimdRealField,
N2: SimdRealField + SupersetOf<N1>,
{
#[inline]
fn to_superset(&self) -> UnitQuaternion<N2> {
UnitQuaternion::new_unchecked(self.as_ref().to_superset())
}
#[inline]
fn is_in_subset(uq: &UnitQuaternion<N2>) -> bool {
crate::is_convertible::<_, Quaternion<N1>>(uq.as_ref())
}
#[inline]
fn from_superset_unchecked(uq: &UnitQuaternion<N2>) -> Self {
Self::new_unchecked(crate::convert_ref_unchecked(uq.as_ref()))
}
}
impl<N1, N2> SubsetOf<Rotation<N2, U3>> for UnitQuaternion<N1>
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
{
#[inline]
fn to_superset(&self) -> Rotation3<N2> {
let q: UnitQuaternion<N2> = self.to_superset();
q.to_rotation_matrix()
}
#[inline]
fn is_in_subset(rot: &Rotation3<N2>) -> bool {
crate::is_convertible::<_, Rotation3<N1>>(rot)
}
#[inline]
fn from_superset_unchecked(rot: &Rotation3<N2>) -> Self {
let q = UnitQuaternion::<N2>::from_rotation_matrix(rot);
crate::convert_unchecked(q)
}
}
impl<N1, N2, R> SubsetOf<Isometry<N2, U3, R>> for UnitQuaternion<N1>
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AbstractRotation<N2, U3> + SupersetOf<Self>,
{
#[inline]
fn to_superset(&self) -> Isometry<N2, U3, R> {
Isometry::from_parts(Translation::identity(), crate::convert_ref(self))
}
#[inline]
fn is_in_subset(iso: &Isometry<N2, U3, R>) -> bool {
iso.translation.vector.is_zero()
}
#[inline]
fn from_superset_unchecked(iso: &Isometry<N2, U3, R>) -> Self {
crate::convert_ref_unchecked(&iso.rotation)
}
}
impl<N1, N2, R> SubsetOf<Similarity<N2, U3, R>> for UnitQuaternion<N1>
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AbstractRotation<N2, U3> + SupersetOf<Self>,
{
#[inline]
fn to_superset(&self) -> Similarity<N2, U3, R> {
Similarity::from_isometry(crate::convert_ref(self), N2::one())
}
#[inline]
fn is_in_subset(sim: &Similarity<N2, U3, R>) -> bool {
sim.isometry.translation.vector.is_zero() && sim.scaling() == N2::one()
}
#[inline]
fn from_superset_unchecked(sim: &Similarity<N2, U3, R>) -> Self {
crate::convert_ref_unchecked(&sim.isometry)
}
}
impl<N1, N2, C> SubsetOf<Transform<N2, U3, C>> for UnitQuaternion<N1>
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
C: SuperTCategoryOf<TAffine>,
{
#[inline]
fn to_superset(&self) -> Transform<N2, U3, C> {
Transform::from_matrix_unchecked(self.to_homogeneous().to_superset())
}
#[inline]
fn is_in_subset(t: &Transform<N2, U3, C>) -> bool {
<Self as SubsetOf<_>>::is_in_subset(t.matrix())
}
#[inline]
fn from_superset_unchecked(t: &Transform<N2, U3, C>) -> Self {
Self::from_superset_unchecked(t.matrix())
}
}
impl<N1: RealField, N2: RealField + SupersetOf<N1>> SubsetOf<Matrix4<N2>> for UnitQuaternion<N1> {
#[inline]
fn to_superset(&self) -> Matrix4<N2> {
self.to_homogeneous().to_superset()
}
#[inline]
fn is_in_subset(m: &Matrix4<N2>) -> bool {
crate::is_convertible::<_, Rotation3<N1>>(m)
}
#[inline]
fn from_superset_unchecked(m: &Matrix4<N2>) -> Self {
let rot: Rotation3<N1> = crate::convert_ref_unchecked(m);
Self::from_rotation_matrix(&rot)
}
}
#[cfg(feature = "mint")]
impl<N: Scalar> From<mint::Quaternion<N>> for Quaternion<N> {
fn from(q: mint::Quaternion<N>) -> Self {
Self::new(q.s, q.v.x, q.v.y, q.v.z)
}
}
#[cfg(feature = "mint")]
impl<N: Scalar> Into<mint::Quaternion<N>> for Quaternion<N> {
fn into(self) -> mint::Quaternion<N> {
mint::Quaternion {
v: mint::Vector3 {
x: self[0],
y: self[1],
z: self[2],
},
s: self[3],
}
}
}
#[cfg(feature = "mint")]
impl<N: Scalar> Into<mint::Quaternion<N>> for UnitQuaternion<N> {
fn into(self) -> mint::Quaternion<N> {
mint::Quaternion {
v: mint::Vector3 {
x: self[0],
y: self[1],
z: self[2],
},
s: self[3],
}
}
}
impl<N: SimdRealField> From<UnitQuaternion<N>> for Matrix4<N>
where
N::Element: SimdRealField,
{
#[inline]
fn from(q: UnitQuaternion<N>) -> Self {
q.to_homogeneous()
}
}
impl<N: SimdRealField> From<UnitQuaternion<N>> for Rotation3<N>
where
N::Element: SimdRealField,
{
#[inline]
fn from(q: UnitQuaternion<N>) -> Self {
q.to_rotation_matrix()
}
}
impl<N: SimdRealField> From<Rotation3<N>> for UnitQuaternion<N>
where
N::Element: SimdRealField,
{
#[inline]
fn from(q: Rotation3<N>) -> Self {
Self::from_rotation_matrix(&q)
}
}
impl<N: SimdRealField> From<UnitQuaternion<N>> for Matrix3<N>
where
N::Element: SimdRealField,
{
#[inline]
fn from(q: UnitQuaternion<N>) -> Self {
q.to_rotation_matrix().into_inner()
}
}
impl<N: Scalar> From<Vector4<N>> for Quaternion<N> {
#[inline]
fn from(coords: Vector4<N>) -> Self {
Self { coords }
}
}
impl<N: Scalar> From<[N; 4]> for Quaternion<N> {
#[inline]
fn from(coords: [N; 4]) -> Self {
Self {
coords: coords.into(),
}
}
}
impl<N: Scalar + PrimitiveSimdValue> From<[Quaternion<N::Element>; 2]> for Quaternion<N>
where
N: From<[<N as SimdValue>::Element; 2]>,
N::Element: Scalar + Copy,
{
#[inline]
fn from(arr: [Quaternion<N::Element>; 2]) -> Self {
Self::from(Vector4::from([arr[0].coords, arr[1].coords]))
}
}
impl<N: Scalar + PrimitiveSimdValue> From<[Quaternion<N::Element>; 4]> for Quaternion<N>
where
N: From<[<N as SimdValue>::Element; 4]>,
N::Element: Scalar + Copy,
{
#[inline]
fn from(arr: [Quaternion<N::Element>; 4]) -> Self {
Self::from(Vector4::from([
arr[0].coords,
arr[1].coords,
arr[2].coords,
arr[3].coords,
]))
}
}
impl<N: Scalar + PrimitiveSimdValue> From<[Quaternion<N::Element>; 8]> for Quaternion<N>
where
N: From<[<N as SimdValue>::Element; 8]>,
N::Element: Scalar + Copy,
{
#[inline]
fn from(arr: [Quaternion<N::Element>; 8]) -> Self {
Self::from(Vector4::from([
arr[0].coords,
arr[1].coords,
arr[2].coords,
arr[3].coords,
arr[4].coords,
arr[5].coords,
arr[6].coords,
arr[7].coords,
]))
}
}
impl<N: Scalar + PrimitiveSimdValue> From<[Quaternion<N::Element>; 16]> for Quaternion<N>
where
N: From<[<N as SimdValue>::Element; 16]>,
N::Element: Scalar + Copy,
{
#[inline]
fn from(arr: [Quaternion<N::Element>; 16]) -> Self {
Self::from(Vector4::from([
arr[0].coords,
arr[1].coords,
arr[2].coords,
arr[3].coords,
arr[4].coords,
arr[5].coords,
arr[6].coords,
arr[7].coords,
arr[8].coords,
arr[9].coords,
arr[10].coords,
arr[11].coords,
arr[12].coords,
arr[13].coords,
arr[14].coords,
arr[15].coords,
]))
}
}
impl<N: Scalar + Copy + PrimitiveSimdValue> From<[UnitQuaternion<N::Element>; 2]>
for UnitQuaternion<N>
where
N: From<[<N as simba::simd::SimdValue>::Element; 2]>,
N::Element: Scalar + Copy,
{
#[inline]
fn from(arr: [UnitQuaternion<N::Element>; 2]) -> Self {
Self::new_unchecked(Quaternion::from([arr[0].into_inner(), arr[1].into_inner()]))
}
}
impl<N: Scalar + Copy + PrimitiveSimdValue> From<[UnitQuaternion<N::Element>; 4]>
for UnitQuaternion<N>
where
N: From<[<N as simba::simd::SimdValue>::Element; 4]>,
N::Element: Scalar + Copy,
{
#[inline]
fn from(arr: [UnitQuaternion<N::Element>; 4]) -> Self {
Self::new_unchecked(Quaternion::from([
arr[0].into_inner(),
arr[1].into_inner(),
arr[2].into_inner(),
arr[3].into_inner(),
]))
}
}
impl<N: Scalar + Copy + PrimitiveSimdValue> From<[UnitQuaternion<N::Element>; 8]>
for UnitQuaternion<N>
where
N: From<[<N as simba::simd::SimdValue>::Element; 8]>,
N::Element: Scalar + Copy,
{
#[inline]
fn from(arr: [UnitQuaternion<N::Element>; 8]) -> Self {
Self::new_unchecked(Quaternion::from([
arr[0].into_inner(),
arr[1].into_inner(),
arr[2].into_inner(),
arr[3].into_inner(),
arr[4].into_inner(),
arr[5].into_inner(),
arr[6].into_inner(),
arr[7].into_inner(),
]))
}
}
impl<N: Scalar + Copy + PrimitiveSimdValue> From<[UnitQuaternion<N::Element>; 16]>
for UnitQuaternion<N>
where
N: From<[<N as simba::simd::SimdValue>::Element; 16]>,
N::Element: Scalar + Copy,
{
#[inline]
fn from(arr: [UnitQuaternion<N::Element>; 16]) -> Self {
Self::new_unchecked(Quaternion::from([
arr[0].into_inner(),
arr[1].into_inner(),
arr[2].into_inner(),
arr[3].into_inner(),
arr[4].into_inner(),
arr[5].into_inner(),
arr[6].into_inner(),
arr[7].into_inner(),
arr[8].into_inner(),
arr[9].into_inner(),
arr[10].into_inner(),
arr[11].into_inner(),
arr[12].into_inner(),
arr[13].into_inner(),
arr[14].into_inner(),
arr[15].into_inner(),
]))
}
}