forked from M-Labs/nalgebra
414 lines
12 KiB
Rust
414 lines
12 KiB
Rust
use alga::general::ComplexField;
|
|
|
|
use crate::base::allocator::Allocator;
|
|
use crate::base::constraint::{SameNumberOfRows, ShapeConstraint};
|
|
use crate::base::dimension::{Dim, U1};
|
|
use crate::base::storage::{Storage, StorageMut};
|
|
use crate::base::{DefaultAllocator, Matrix, MatrixMN, SquareMatrix, Vector, DVectorSlice};
|
|
|
|
impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
|
/// Computes the solution of the linear system `self . x = b` where `x` is the unknown and only
|
|
/// the lower-triangular part of `self` (including the diagonal) is considered not-zero.
|
|
#[inline]
|
|
pub fn solve_lower_triangular<R2: Dim, C2: Dim, S2>(
|
|
&self,
|
|
b: &Matrix<N, R2, C2, S2>,
|
|
) -> Option<MatrixMN<N, R2, C2>>
|
|
where
|
|
S2: StorageMut<N, R2, C2>,
|
|
DefaultAllocator: Allocator<N, R2, C2>,
|
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
|
{
|
|
let mut res = b.clone_owned();
|
|
if self.solve_lower_triangular_mut(&mut res) {
|
|
Some(res)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Computes the solution of the linear system `self . x = b` where `x` is the unknown and only
|
|
/// the upper-triangular part of `self` (including the diagonal) is considered not-zero.
|
|
#[inline]
|
|
pub fn solve_upper_triangular<R2: Dim, C2: Dim, S2>(
|
|
&self,
|
|
b: &Matrix<N, R2, C2, S2>,
|
|
) -> Option<MatrixMN<N, R2, C2>>
|
|
where
|
|
S2: StorageMut<N, R2, C2>,
|
|
DefaultAllocator: Allocator<N, R2, C2>,
|
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
|
{
|
|
let mut res = b.clone_owned();
|
|
if self.solve_upper_triangular_mut(&mut res) {
|
|
Some(res)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Solves the linear system `self . x = b` where `x` is the unknown and only the
|
|
/// lower-triangular part of `self` (including the diagonal) is considered not-zero.
|
|
pub fn solve_lower_triangular_mut<R2: Dim, C2: Dim, S2>(
|
|
&self,
|
|
b: &mut Matrix<N, R2, C2, S2>,
|
|
) -> bool
|
|
where
|
|
S2: StorageMut<N, R2, C2>,
|
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
|
{
|
|
let cols = b.ncols();
|
|
|
|
for i in 0..cols {
|
|
if !self.solve_lower_triangular_vector_mut(&mut b.column_mut(i)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
true
|
|
}
|
|
|
|
fn solve_lower_triangular_vector_mut<R2: Dim, S2>(&self, b: &mut Vector<N, R2, S2>) -> bool
|
|
where
|
|
S2: StorageMut<N, R2, U1>,
|
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
|
{
|
|
let dim = self.nrows();
|
|
|
|
for i in 0..dim {
|
|
let coeff;
|
|
|
|
unsafe {
|
|
let diag = *self.get_unchecked((i, i));
|
|
|
|
if diag.is_zero() {
|
|
return false;
|
|
}
|
|
|
|
coeff = *b.vget_unchecked(i) / diag;
|
|
*b.vget_unchecked_mut(i) = coeff;
|
|
}
|
|
|
|
b.rows_range_mut(i + 1..)
|
|
.axpy(-coeff, &self.slice_range(i + 1.., i), N::one());
|
|
}
|
|
|
|
true
|
|
}
|
|
|
|
// FIXME: add the same but for solving upper-triangular.
|
|
/// Solves the linear system `self . x = b` where `x` is the unknown and only the
|
|
/// lower-triangular part of `self` is considered not-zero. The diagonal is never read as it is
|
|
/// assumed to be equal to `diag`. Returns `false` and does not modify its inputs if `diag` is zero.
|
|
pub fn solve_lower_triangular_with_diag_mut<R2: Dim, C2: Dim, S2>(
|
|
&self,
|
|
b: &mut Matrix<N, R2, C2, S2>,
|
|
diag: N,
|
|
) -> bool
|
|
where
|
|
S2: StorageMut<N, R2, C2>,
|
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
|
{
|
|
if diag.is_zero() {
|
|
return false;
|
|
}
|
|
|
|
let dim = self.nrows();
|
|
let cols = b.ncols();
|
|
|
|
for k in 0..cols {
|
|
let mut bcol = b.column_mut(k);
|
|
|
|
for i in 0..dim - 1 {
|
|
let coeff = unsafe { *bcol.vget_unchecked(i) } / diag;
|
|
bcol.rows_range_mut(i + 1..)
|
|
.axpy(-coeff, &self.slice_range(i + 1.., i), N::one());
|
|
}
|
|
}
|
|
|
|
true
|
|
}
|
|
|
|
/// Solves the linear system `self . x = b` where `x` is the unknown and only the
|
|
/// upper-triangular part of `self` (including the diagonal) is considered not-zero.
|
|
pub fn solve_upper_triangular_mut<R2: Dim, C2: Dim, S2>(
|
|
&self,
|
|
b: &mut Matrix<N, R2, C2, S2>,
|
|
) -> bool
|
|
where
|
|
S2: StorageMut<N, R2, C2>,
|
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
|
{
|
|
let cols = b.ncols();
|
|
|
|
for i in 0..cols {
|
|
if !self.solve_upper_triangular_vector_mut(&mut b.column_mut(i)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
true
|
|
}
|
|
|
|
fn solve_upper_triangular_vector_mut<R2: Dim, S2>(&self, b: &mut Vector<N, R2, S2>) -> bool
|
|
where
|
|
S2: StorageMut<N, R2, U1>,
|
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
|
{
|
|
let dim = self.nrows();
|
|
|
|
for i in (0..dim).rev() {
|
|
let coeff;
|
|
|
|
unsafe {
|
|
let diag = *self.get_unchecked((i, i));
|
|
|
|
if diag.is_zero() {
|
|
return false;
|
|
}
|
|
|
|
coeff = *b.vget_unchecked(i) / diag;
|
|
*b.vget_unchecked_mut(i) = coeff;
|
|
}
|
|
|
|
b.rows_range_mut(..i)
|
|
.axpy(-coeff, &self.slice_range(..i, i), N::one());
|
|
}
|
|
|
|
true
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Transpose and adjoint versions
|
|
*
|
|
*/
|
|
/// Computes the solution of the linear system `self.transpose() . x = b` where `x` is the unknown and only
|
|
/// the lower-triangular part of `self` (including the diagonal) is considered not-zero.
|
|
#[inline]
|
|
pub fn tr_solve_lower_triangular<R2: Dim, C2: Dim, S2>(
|
|
&self,
|
|
b: &Matrix<N, R2, C2, S2>,
|
|
) -> Option<MatrixMN<N, R2, C2>>
|
|
where
|
|
S2: StorageMut<N, R2, C2>,
|
|
DefaultAllocator: Allocator<N, R2, C2>,
|
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
|
{
|
|
let mut res = b.clone_owned();
|
|
if self.tr_solve_lower_triangular_mut(&mut res) {
|
|
Some(res)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Computes the solution of the linear system `self.transpose() . x = b` where `x` is the unknown and only
|
|
/// the upper-triangular part of `self` (including the diagonal) is considered not-zero.
|
|
#[inline]
|
|
pub fn tr_solve_upper_triangular<R2: Dim, C2: Dim, S2>(
|
|
&self,
|
|
b: &Matrix<N, R2, C2, S2>,
|
|
) -> Option<MatrixMN<N, R2, C2>>
|
|
where
|
|
S2: StorageMut<N, R2, C2>,
|
|
DefaultAllocator: Allocator<N, R2, C2>,
|
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
|
{
|
|
let mut res = b.clone_owned();
|
|
if self.tr_solve_upper_triangular_mut(&mut res) {
|
|
Some(res)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Solves the linear system `self.transpose() . x = b` where `x` is the unknown and only the
|
|
/// lower-triangular part of `self` (including the diagonal) is considered not-zero.
|
|
pub fn tr_solve_lower_triangular_mut<R2: Dim, C2: Dim, S2>(
|
|
&self,
|
|
b: &mut Matrix<N, R2, C2, S2>,
|
|
) -> bool
|
|
where
|
|
S2: StorageMut<N, R2, C2>,
|
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
|
{
|
|
let cols = b.ncols();
|
|
|
|
for i in 0..cols {
|
|
if !self.xx_solve_lower_triangular_vector_mut(&mut b.column_mut(i), |e| e, |a, b| a.dot(b)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
true
|
|
}
|
|
|
|
/// Solves the linear system `self.transpose() . x = b` where `x` is the unknown and only the
|
|
/// upper-triangular part of `self` (including the diagonal) is considered not-zero.
|
|
pub fn tr_solve_upper_triangular_mut<R2: Dim, C2: Dim, S2>(
|
|
&self,
|
|
b: &mut Matrix<N, R2, C2, S2>,
|
|
) -> bool
|
|
where
|
|
S2: StorageMut<N, R2, C2>,
|
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
|
{
|
|
let cols = b.ncols();
|
|
|
|
for i in 0..cols {
|
|
if !self.xx_solve_upper_triangular_vector_mut(&mut b.column_mut(i), |e| e, |a, b| a.dot(b)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
true
|
|
}
|
|
|
|
/// Computes the solution of the linear system `self.adjoint() . x = b` where `x` is the unknown and only
|
|
/// the lower-triangular part of `self` (including the diagonal) is considered not-zero.
|
|
#[inline]
|
|
pub fn ad_solve_lower_triangular<R2: Dim, C2: Dim, S2>(
|
|
&self,
|
|
b: &Matrix<N, R2, C2, S2>,
|
|
) -> Option<MatrixMN<N, R2, C2>>
|
|
where
|
|
S2: StorageMut<N, R2, C2>,
|
|
DefaultAllocator: Allocator<N, R2, C2>,
|
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
|
{
|
|
let mut res = b.clone_owned();
|
|
if self.ad_solve_lower_triangular_mut(&mut res) {
|
|
Some(res)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Computes the solution of the linear system `self.adjoint() . x = b` where `x` is the unknown and only
|
|
/// the upper-triangular part of `self` (including the diagonal) is considered not-zero.
|
|
#[inline]
|
|
pub fn ad_solve_upper_triangular<R2: Dim, C2: Dim, S2>(
|
|
&self,
|
|
b: &Matrix<N, R2, C2, S2>,
|
|
) -> Option<MatrixMN<N, R2, C2>>
|
|
where
|
|
S2: StorageMut<N, R2, C2>,
|
|
DefaultAllocator: Allocator<N, R2, C2>,
|
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
|
{
|
|
let mut res = b.clone_owned();
|
|
if self.ad_solve_upper_triangular_mut(&mut res) {
|
|
Some(res)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Solves the linear system `self.adjoint() . x = b` where `x` is the unknown and only the
|
|
/// lower-triangular part of `self` (including the diagonal) is considered not-zero.
|
|
pub fn ad_solve_lower_triangular_mut<R2: Dim, C2: Dim, S2>(
|
|
&self,
|
|
b: &mut Matrix<N, R2, C2, S2>,
|
|
) -> bool
|
|
where
|
|
S2: StorageMut<N, R2, C2>,
|
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
|
{
|
|
let cols = b.ncols();
|
|
|
|
for i in 0..cols {
|
|
if !self.xx_solve_lower_triangular_vector_mut(&mut b.column_mut(i), |e| e.conjugate(), |a, b| a.dotc(b)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
true
|
|
}
|
|
|
|
/// Solves the linear system `self.adjoint() . x = b` where `x` is the unknown and only the
|
|
/// upper-triangular part of `self` (including the diagonal) is considered not-zero.
|
|
pub fn ad_solve_upper_triangular_mut<R2: Dim, C2: Dim, S2>(
|
|
&self,
|
|
b: &mut Matrix<N, R2, C2, S2>,
|
|
) -> bool
|
|
where
|
|
S2: StorageMut<N, R2, C2>,
|
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
|
{
|
|
let cols = b.ncols();
|
|
|
|
for i in 0..cols {
|
|
if !self.xx_solve_upper_triangular_vector_mut(&mut b.column_mut(i), |e| e.conjugate(), |a, b| a.dotc(b)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
true
|
|
}
|
|
|
|
|
|
#[inline(always)]
|
|
fn xx_solve_lower_triangular_vector_mut<R2: Dim, S2>(
|
|
&self,
|
|
b: &mut Vector<N, R2, S2>,
|
|
conjugate: impl Fn(N) -> N,
|
|
dot: impl Fn(&DVectorSlice<N, S::RStride, S::CStride>, &DVectorSlice<N, S2::RStride, S2::CStride>) -> N,
|
|
) -> bool
|
|
where
|
|
S2: StorageMut<N, R2, U1>,
|
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
|
{
|
|
let dim = self.nrows();
|
|
|
|
for i in (0..dim).rev() {
|
|
let dot = dot(&self.slice_range(i + 1.., i), &b.slice_range(i + 1.., 0));
|
|
|
|
unsafe {
|
|
let b_i = b.vget_unchecked_mut(i);
|
|
|
|
let diag = conjugate(*self.get_unchecked((i, i)));
|
|
|
|
if diag.is_zero() {
|
|
return false;
|
|
}
|
|
|
|
*b_i = (*b_i - dot) / diag;
|
|
}
|
|
}
|
|
|
|
true
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn xx_solve_upper_triangular_vector_mut<R2: Dim, S2>(
|
|
&self,
|
|
b: &mut Vector<N, R2, S2>,
|
|
conjugate: impl Fn(N) -> N,
|
|
dot: impl Fn(&DVectorSlice<N, S::RStride, S::CStride>, &DVectorSlice<N, S2::RStride, S2::CStride>) -> N,
|
|
) -> bool
|
|
where
|
|
S2: StorageMut<N, R2, U1>,
|
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
|
{
|
|
let dim = self.nrows();
|
|
|
|
for i in 0..dim {
|
|
let dot = dot(&self.slice_range(..i, i), &b.slice_range(..i, 0));
|
|
|
|
unsafe {
|
|
let b_i = b.vget_unchecked_mut(i);
|
|
let diag = conjugate(*self.get_unchecked((i, i)));
|
|
|
|
if diag.is_zero() {
|
|
return false;
|
|
}
|
|
|
|
*b_i = (*b_i - dot) / diag;
|
|
}
|
|
}
|
|
|
|
true
|
|
}
|
|
}
|