nalgebra/src/geometry/transform_alga.rs
Sébastien Crozet 662cc9cd7f Run rust fmt.
2018-02-03 13:59:05 +01:00

144 lines
4.1 KiB
Rust

use alga::general::{AbstractGroup, AbstractLoop, AbstractMagma, AbstractMonoid,
AbstractQuasigroup, AbstractSemigroup, Identity, Inverse, Multiplicative, Real};
use alga::linear::{ProjectiveTransformation, Transformation};
use core::{DefaultAllocator, VectorN};
use core::dimension::{DimNameAdd, DimNameSum, U1};
use core::allocator::Allocator;
use geometry::{Point, SubTCategoryOf, TCategory, TProjective, Transform};
/*
*
* Algebraic structures.
*
*/
impl<N: Real, D: DimNameAdd<U1>, C> Identity<Multiplicative> for Transform<N, D, C>
where
C: TCategory,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
{
#[inline]
fn identity() -> Self {
Self::identity()
}
}
impl<N: Real, D: DimNameAdd<U1>, C> Inverse<Multiplicative> for Transform<N, D, C>
where
C: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
{
#[inline]
fn inverse(&self) -> Self {
self.clone().inverse()
}
#[inline]
fn inverse_mut(&mut self) {
self.inverse_mut()
}
}
impl<N: Real, D: DimNameAdd<U1>, C> AbstractMagma<Multiplicative> for Transform<N, D, C>
where
C: TCategory,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
{
#[inline]
fn operate(&self, rhs: &Self) -> Self {
self * rhs
}
}
macro_rules! impl_multiplicative_structures(
($($marker: ident<$operator: ident>),* $(,)*) => {$(
impl<N: Real, D: DimNameAdd<U1>, C> $marker<$operator> for Transform<N, D, C>
where C: TCategory,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> { }
)*}
);
macro_rules! impl_inversible_multiplicative_structures(
($($marker: ident<$operator: ident>),* $(,)*) => {$(
impl<N: Real, D: DimNameAdd<U1>, C> $marker<$operator> for Transform<N, D, C>
where C: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> { }
)*}
);
impl_multiplicative_structures!(
AbstractSemigroup<Multiplicative>,
AbstractMonoid<Multiplicative>,
);
impl_inversible_multiplicative_structures!(
AbstractQuasigroup<Multiplicative>,
AbstractLoop<Multiplicative>,
AbstractGroup<Multiplicative>
);
/*
*
* Transformation groups.
*
*/
impl<N, D: DimNameAdd<U1>, C> Transformation<Point<N, D>> for Transform<N, D, C>
where
N: Real,
C: TCategory,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>
+ Allocator<N, DimNameSum<D, U1>>
+ Allocator<N, D, D>
+ Allocator<N, D>,
{
#[inline]
fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
self * pt
}
#[inline]
fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
self * v
}
}
impl<N, D: DimNameAdd<U1>, C> ProjectiveTransformation<Point<N, D>> for Transform<N, D, C>
where
N: Real,
C: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>
+ Allocator<N, DimNameSum<D, U1>>
+ Allocator<N, D, D>
+ Allocator<N, D>,
{
#[inline]
fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
self.inverse() * pt
}
#[inline]
fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
self.inverse() * v
}
}
// FIXME: we need to implement an SVD for this.
//
// impl<N, D: DimNameAdd<U1>, C> AffineTransformation<Point<N, D>> for Transform<N, D, C>
// where N: Real,
// C: SubTCategoryOf<TAffine>,
// DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> +
// Allocator<N, D, D> +
// Allocator<N, D> {
// type PreRotation = Rotation<N, D>;
// type NonUniformScaling = VectorN<N, D>;
// type PostRotation = Rotation<N, D>;
// type Translation = Translation<N, D>;
//
// #[inline]
// fn decompose(&self) -> (Self::Translation, Self::PostRotation, Self::NonUniformScaling, Self::PreRotation) {
// unimplemented!()
// }
// }