nalgebra/src/core/properties.rs
Sébastien Crozet 662cc9cd7f Run rust fmt.
2018-02-03 13:59:05 +01:00

123 lines
3.6 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Matrix properties checks.
use num::{One, Zero};
use approx::ApproxEq;
use alga::general::{ClosedAdd, ClosedMul, Real};
use core::{DefaultAllocator, Matrix, Scalar, SquareMatrix};
use core::dimension::{Dim, DimMin};
use core::storage::Storage;
use core::allocator::Allocator;
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// Indicates if this is a square matrix.
#[inline]
pub fn is_empty(&self) -> bool {
let (nrows, ncols) = self.shape();
nrows == 0 || ncols == 0
}
/// Indicates if this is a square matrix.
#[inline]
pub fn is_square(&self) -> bool {
let (nrows, ncols) = self.shape();
nrows == ncols
}
// FIXME: ApproxEq prevents us from using those methods on integer matrices…
/// Indicated if this is the identity matrix within a relative error of `eps`.
///
/// If the matrix is diagonal, this checks that diagonal elements (i.e. at coordinates `(i, i)`
/// for i from `0` to `min(R, C)`) are equal one; and that all other elements are zero.
#[inline]
pub fn is_identity(&self, eps: N::Epsilon) -> bool
where
N: Zero + One + ApproxEq,
N::Epsilon: Copy,
{
let (nrows, ncols) = self.shape();
let d;
if nrows > ncols {
d = ncols;
for i in d..nrows {
for j in 0..ncols {
if !relative_eq!(self[(i, j)], N::zero(), epsilon = eps) {
return false;
}
}
}
} else {
// nrows <= ncols
d = nrows;
for i in 0..nrows {
for j in d..ncols {
if !relative_eq!(self[(i, j)], N::zero(), epsilon = eps) {
return false;
}
}
}
}
// Off-diagonal elements of the sub-square matrix.
for i in 1..d {
for j in 0..i {
// FIXME: use unsafe indexing.
if !relative_eq!(self[(i, j)], N::zero(), epsilon = eps)
|| !relative_eq!(self[(j, i)], N::zero(), epsilon = eps)
{
return false;
}
}
}
// Diagonal elements of the sub-square matrix.
for i in 0..d {
if !relative_eq!(self[(i, i)], N::one(), epsilon = eps) {
return false;
}
}
true
}
/// Checks that `Mᵀ × M = Id`.
///
/// In this definition `Id` is approximately equal to the identity matrix with a relative error
/// equal to `eps`.
#[inline]
pub fn is_orthogonal(&self, eps: N::Epsilon) -> bool
where
N: Zero + One + ClosedAdd + ClosedMul + ApproxEq,
S: Storage<N, R, C>,
N::Epsilon: Copy,
DefaultAllocator: Allocator<N, C, C>,
{
(self.tr_mul(self)).is_identity(eps)
}
}
impl<N: Real, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S>
where
DefaultAllocator: Allocator<N, D, D>,
{
/// Checks that this matrix is orthogonal and has a determinant equal to 1.
#[inline]
pub fn is_special_orthogonal(&self, eps: N) -> bool
where
D: DimMin<D, Output = D>,
DefaultAllocator: Allocator<(usize, usize), D>,
{
self.is_square() && self.is_orthogonal(eps) && self.determinant() > N::zero()
}
/// Returns `true` if this matrix is invertible.
#[inline]
pub fn is_invertible(&self) -> bool {
// FIXME: improve this?
self.clone_owned().try_inverse().is_some()
}
}