forked from M-Labs/nalgebra
106 lines
4.4 KiB
Rust
106 lines
4.4 KiB
Rust
#![cfg(all(feature = "arbitrary", feature = "debug"))]
|
|
|
|
macro_rules! gen_tests(
|
|
($module: ident, $scalar: ty) => {
|
|
mod $module {
|
|
use na::debug::RandomSDP;
|
|
use na::dimension::{U4, Dynamic};
|
|
use na::{DMatrix, DVector, Matrix4x3, Vector4};
|
|
use rand::random;
|
|
#[allow(unused_imports)]
|
|
use crate::core::helper::{RandScalar, RandComplex};
|
|
use std::cmp;
|
|
|
|
quickcheck! {
|
|
fn cholesky(n: usize) -> bool {
|
|
let m = RandomSDP::new(Dynamic::new(n.max(1).min(50)), || random::<$scalar>().0).unwrap();
|
|
let l = m.clone().cholesky().unwrap().unpack();
|
|
relative_eq!(m, &l * l.adjoint(), epsilon = 1.0e-7)
|
|
}
|
|
|
|
fn cholesky_static(_m: RandomSDP<f64, U4>) -> bool {
|
|
let m = RandomSDP::new(U4, || random::<$scalar>().0).unwrap();
|
|
let chol = m.cholesky().unwrap();
|
|
let l = chol.unpack();
|
|
|
|
if !relative_eq!(m, &l * l.adjoint(), epsilon = 1.0e-7) {
|
|
false
|
|
}
|
|
else {
|
|
true
|
|
}
|
|
}
|
|
|
|
fn cholesky_solve(n: usize, nb: usize) -> bool {
|
|
let n = n.max(1).min(50);
|
|
let m = RandomSDP::new(Dynamic::new(n), || random::<$scalar>().0).unwrap();
|
|
let nb = cmp::min(nb, 50); // To avoid slowing down the test too much.
|
|
|
|
let chol = m.clone().cholesky().unwrap();
|
|
let b1 = DVector::<$scalar>::new_random(n).map(|e| e.0);
|
|
let b2 = DMatrix::<$scalar>::new_random(n, nb).map(|e| e.0);
|
|
|
|
let sol1 = chol.solve(&b1);
|
|
let sol2 = chol.solve(&b2);
|
|
|
|
relative_eq!(&m * &sol1, b1, epsilon = 1.0e-7) &&
|
|
relative_eq!(&m * &sol2, b2, epsilon = 1.0e-7)
|
|
}
|
|
|
|
fn cholesky_solve_static(_n: usize) -> bool {
|
|
let m = RandomSDP::new(U4, || random::<$scalar>().0).unwrap();
|
|
let chol = m.clone().cholesky().unwrap();
|
|
let b1 = Vector4::<$scalar>::new_random().map(|e| e.0);
|
|
let b2 = Matrix4x3::<$scalar>::new_random().map(|e| e.0);
|
|
|
|
let sol1 = chol.solve(&b1);
|
|
let sol2 = chol.solve(&b2);
|
|
|
|
relative_eq!(m * sol1, b1, epsilon = 1.0e-7) &&
|
|
relative_eq!(m * sol2, b2, epsilon = 1.0e-7)
|
|
}
|
|
|
|
fn cholesky_inverse(n: usize) -> bool {
|
|
let m = RandomSDP::new(Dynamic::new(n.max(1).min(50)), || random::<$scalar>().0).unwrap();
|
|
let m1 = m.clone().cholesky().unwrap().inverse();
|
|
let id1 = &m * &m1;
|
|
let id2 = &m1 * &m;
|
|
|
|
id1.is_identity(1.0e-7) && id2.is_identity(1.0e-7)
|
|
}
|
|
|
|
fn cholesky_inverse_static(_n: usize) -> bool {
|
|
let m = RandomSDP::new(U4, || random::<$scalar>().0).unwrap();
|
|
let m1 = m.clone().cholesky().unwrap().inverse();
|
|
let id1 = &m * &m1;
|
|
let id2 = &m1 * &m;
|
|
|
|
id1.is_identity(1.0e-7) && id2.is_identity(1.0e-7)
|
|
}
|
|
|
|
fn cholesky_rank_one_update(_n: usize) -> bool {
|
|
let mut m = RandomSDP::new(U4, || random::<$scalar>().0).unwrap();
|
|
let x = Vector4::<$scalar>::new_random().map(|e| e.0);
|
|
let sigma = random::<$scalar>().0; // random::<$scalar>().0;
|
|
let one = sigma*0. + 1.; // TODO this is dirty but $scalar appears to not be a scalar type
|
|
|
|
// updates cholesky decomposition and reconstructs m
|
|
let mut chol = m.clone().cholesky().unwrap();
|
|
chol.rank_one_update(&x, sigma);
|
|
let m_chol_updated = chol.l() * chol.l().adjoint();
|
|
|
|
// updates m manually
|
|
m.syger(sigma, &x, &x, one); // m += sigma * x * x.adjoint()
|
|
|
|
println!("m : {:?}", m);
|
|
|
|
relative_eq!(m, m_chol_updated, epsilon = 1.0e-7)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
);
|
|
|
|
gen_tests!(complex, RandComplex<f64>);
|
|
gen_tests!(f64, RandScalar<f64>);
|