forked from M-Labs/nalgebra
514bf74efe
Those traits are not really removed since rust cannot handle those multiple operator overloading very well yet, making them sometimes unuseable on generic code.
328 lines
6.7 KiB
Rust
328 lines
6.7 KiB
Rust
use std::num::{Zero, One};
|
|
use std::rand::{random};
|
|
use std::cmp::ApproxEq;
|
|
use vec::*;
|
|
use mat::*;
|
|
|
|
macro_rules! test_iterator_impl(
|
|
($t: ty, $n: ty) => (
|
|
do 10000.times {
|
|
let v: $t = random();
|
|
let mut mv: $t = v.clone();
|
|
let n: $n = random();
|
|
|
|
let nv: $t = v.iter().map(|e| e * n).collect();
|
|
|
|
for e in mv.mut_iter() {
|
|
*e = *e * n
|
|
}
|
|
|
|
assert!(nv == mv && nv == v * n);
|
|
}
|
|
)
|
|
)
|
|
|
|
macro_rules! test_commut_dot_impl(
|
|
($t: ty) => (
|
|
do 10000.times {
|
|
let v1 : $t = random();
|
|
let v2 : $t = random();
|
|
|
|
assert!(v1.dot(&v2).approx_eq(&v2.dot(&v1)));
|
|
}
|
|
);
|
|
)
|
|
|
|
macro_rules! test_scalar_op_impl(
|
|
($t: ty, $n: ty) => (
|
|
do 10000.times {
|
|
let v1 : $t = random();
|
|
let n : $n = random();
|
|
|
|
assert!(((v1 * n) / n).approx_eq(&v1));
|
|
assert!(((v1 / n) * n).approx_eq(&v1));
|
|
assert!(((v1 - n) + n).approx_eq(&v1));
|
|
assert!(((v1 + n) - n).approx_eq(&v1));
|
|
|
|
let mut v1 : $t = random();
|
|
let v0 : $t = v1.clone();
|
|
let n : $n = random();
|
|
|
|
v1 = v1 * n;
|
|
v1 = v1 / n;
|
|
|
|
assert!(v1.approx_eq(&v0));
|
|
}
|
|
);
|
|
)
|
|
|
|
macro_rules! test_basis_impl(
|
|
($t: ty) => (
|
|
do 10000.times {
|
|
do Basis::canonical_basis |e1: $t| {
|
|
do Basis::canonical_basis |e2: $t| {
|
|
assert!(e1 == e2 || e1.dot(&e2).approx_eq(&Zero::zero()));
|
|
|
|
true
|
|
}
|
|
|
|
assert!(e1.norm().approx_eq(&One::one()));
|
|
|
|
true
|
|
}
|
|
}
|
|
);
|
|
)
|
|
|
|
macro_rules! test_subspace_basis_impl(
|
|
($t: ty) => (
|
|
do 10000.times {
|
|
let v : $t = random();
|
|
let v1 = v.normalized();
|
|
|
|
do v1.orthonormal_subspace_basis() |e1| {
|
|
// check vectors are orthogonal to v1
|
|
assert!(v1.dot(&e1).approx_eq(&Zero::zero()));
|
|
// check vectors form an orthonormal basis
|
|
assert!(e1.norm().approx_eq(&One::one()));
|
|
// check vectors form an ortogonal basis
|
|
do v1.orthonormal_subspace_basis() |e2| {
|
|
assert!(e1 == e2 || e1.dot(&e2).approx_eq(&Zero::zero()));
|
|
|
|
true
|
|
}
|
|
|
|
true
|
|
}
|
|
}
|
|
);
|
|
)
|
|
|
|
#[test]
|
|
fn test_cross_vec3() {
|
|
do 10000.times {
|
|
let v1 : Vec3<f64> = random();
|
|
let v2 : Vec3<f64> = random();
|
|
let v3 : Vec3<f64> = v1.cross(&v2);
|
|
|
|
assert!(v3.dot(&v2).approx_eq(&Zero::zero()));
|
|
assert!(v3.dot(&v1).approx_eq(&Zero::zero()));
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_commut_dot_vec0() {
|
|
test_commut_dot_impl!(Vec0<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_commut_dot_vec1() {
|
|
test_commut_dot_impl!(Vec1<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_commut_dot_vec2() {
|
|
test_commut_dot_impl!(Vec2<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_commut_dot_vec3() {
|
|
test_commut_dot_impl!(Vec3<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_commut_dot_vec4() {
|
|
test_commut_dot_impl!(Vec4<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_commut_dot_vec5() {
|
|
test_commut_dot_impl!(Vec5<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_commut_dot_vec6() {
|
|
test_commut_dot_impl!(Vec6<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_basis_vec0() {
|
|
test_basis_impl!(Vec0<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_basis_vec1() {
|
|
test_basis_impl!(Vec1<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_basis_vec2() {
|
|
test_basis_impl!(Vec2<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_basis_vec3() {
|
|
test_basis_impl!(Vec3<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_basis_vec4() {
|
|
test_basis_impl!(Vec4<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_basis_vec5() {
|
|
test_basis_impl!(Vec5<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_basis_vec6() {
|
|
test_basis_impl!(Vec6<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_subspace_basis_vec0() {
|
|
test_subspace_basis_impl!(Vec0<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_subspace_basis_vec1() {
|
|
test_subspace_basis_impl!(Vec1<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_subspace_basis_vec2() {
|
|
test_subspace_basis_impl!(Vec2<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_subspace_basis_vec3() {
|
|
test_subspace_basis_impl!(Vec3<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_subspace_basis_vec4() {
|
|
test_subspace_basis_impl!(Vec4<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_subspace_basis_vec5() {
|
|
test_subspace_basis_impl!(Vec5<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_subspace_basis_vec6() {
|
|
test_subspace_basis_impl!(Vec6<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_scalar_op_vec0() {
|
|
test_scalar_op_impl!(Vec0<f64>, f64);
|
|
}
|
|
|
|
#[test]
|
|
fn test_scalar_op_vec1() {
|
|
test_scalar_op_impl!(Vec1<f64>, f64);
|
|
}
|
|
|
|
#[test]
|
|
fn test_scalar_op_vec2() {
|
|
test_scalar_op_impl!(Vec2<f64>, f64);
|
|
}
|
|
|
|
#[test]
|
|
fn test_scalar_op_vec3() {
|
|
test_scalar_op_impl!(Vec3<f64>, f64);
|
|
}
|
|
|
|
#[test]
|
|
fn test_scalar_op_vec4() {
|
|
test_scalar_op_impl!(Vec4<f64>, f64);
|
|
}
|
|
|
|
#[test]
|
|
fn test_scalar_op_vec5() {
|
|
test_scalar_op_impl!(Vec5<f64>, f64);
|
|
}
|
|
|
|
#[test]
|
|
fn test_scalar_op_vec6() {
|
|
test_scalar_op_impl!(Vec6<f64>, f64);
|
|
}
|
|
|
|
#[test]
|
|
fn test_iterator_vec0() {
|
|
test_iterator_impl!(Vec0<f64>, f64);
|
|
}
|
|
|
|
#[test]
|
|
fn test_iterator_vec1() {
|
|
test_iterator_impl!(Vec1<f64>, f64);
|
|
}
|
|
|
|
#[test]
|
|
fn test_iterator_vec2() {
|
|
test_iterator_impl!(Vec2<f64>, f64);
|
|
}
|
|
|
|
#[test]
|
|
fn test_iterator_vec3() {
|
|
test_iterator_impl!(Vec3<f64>, f64);
|
|
}
|
|
|
|
#[test]
|
|
fn test_iterator_vec4() {
|
|
test_iterator_impl!(Vec4<f64>, f64);
|
|
}
|
|
|
|
#[test]
|
|
fn test_iterator_vec5() {
|
|
test_iterator_impl!(Vec5<f64>, f64);
|
|
}
|
|
|
|
#[test]
|
|
fn test_iterator_vec6() {
|
|
test_iterator_impl!(Vec6<f64>, f64);
|
|
}
|
|
|
|
#[test]
|
|
fn test_ord_vec3() {
|
|
// equality
|
|
assert!(Vec3::new(0.5, 0.5, 0.5) == Vec3::new(0.5, 0.5, 0.5));
|
|
assert!(!(Vec3::new(1.5, 0.5, 0.5) == Vec3::new(0.5, 0.5, 0.5)));
|
|
assert!(Vec3::new(1.5, 0.5, 0.5) != Vec3::new(0.5, 0.5, 0.5));
|
|
|
|
// comparable
|
|
assert!(Vec3::new(0.5, 0.3, 0.3) < Vec3::new(1.0, 2.0, 1.0));
|
|
assert!(Vec3::new(0.5, 0.3, 0.3) <= Vec3::new(1.0, 2.0, 1.0));
|
|
assert!(Vec3::new(2.0, 4.0, 2.0) > Vec3::new(1.0, 2.0, 1.0));
|
|
assert!(Vec3::new(2.0, 4.0, 2.0) >= Vec3::new(1.0, 2.0, 1.0));
|
|
|
|
// not comparable
|
|
assert!(!(Vec3::new(0.0, 3.0, 0.0) < Vec3::new(1.0, 2.0, 1.0)));
|
|
assert!(!(Vec3::new(0.0, 3.0, 0.0) > Vec3::new(1.0, 2.0, 1.0)));
|
|
assert!(!(Vec3::new(0.0, 3.0, 0.0) <= Vec3::new(1.0, 2.0, 1.0)));
|
|
assert!(!(Vec3::new(0.0, 3.0, 0.0) >= Vec3::new(1.0, 2.0, 1.0)));
|
|
}
|
|
|
|
#[test]
|
|
fn test_min_max_vec3() {
|
|
assert_eq!(Vec3::new(1, 2, 3).max(&Vec3::new(3, 2, 1)), Vec3::new(3, 2, 3));
|
|
assert_eq!(Vec3::new(1, 2, 3).min(&Vec3::new(3, 2, 1)), Vec3::new(1, 2, 1));
|
|
assert_eq!(
|
|
Vec3::new(0, 2, 4).clamp(
|
|
&Vec3::new(1, 1, 1), &Vec3::new(3, 3, 3)
|
|
), Vec3::new(1, 2, 3)
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_outer_vec3() {
|
|
assert_eq!(
|
|
Vec3::new(1, 2, 3).outer(&Vec3::new(4, 5, 6)),
|
|
Mat3::new(
|
|
4, 5, 6,
|
|
8, 10, 12,
|
|
12, 15, 18));
|
|
}
|