nalgebra/src/mat_macros.rs
2013-09-07 17:26:05 +02:00

515 lines
13 KiB
Rust

#[macro_escape];
macro_rules! mat_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
impl<N> $t<N> {
#[inline]
pub fn new($comp0: N $(, $compN: N )*) -> $t<N> {
$t {
$comp0: $comp0
$(, $compN: $compN )*
}
}
}
)
)
macro_rules! mat_cast_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
impl<Nin: NumCast + Clone, Nout: NumCast> MatCast<$t<Nout>> for $t<Nin> {
#[inline]
fn from(m: $t<Nin>) -> $t<Nout> {
$t::new(NumCast::from(m.$comp0.clone()) $(, NumCast::from(m.$compN.clone()) )*)
}
}
)
)
macro_rules! add_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
impl<N: Add<N, N>> Add<$t<N>, $t<N>> for $t<N> {
#[inline]
fn add(&self, other: &$t<N>) -> $t<N> {
$t::new(self.$comp0 + other.$comp0 $(, self.$compN + other.$compN )*)
}
}
)
)
macro_rules! sub_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
impl<N: Sub<N, N>> Sub<$t<N>, $t<N>> for $t<N> {
#[inline]
fn sub(&self, other: &$t<N>) -> $t<N> {
$t::new(self.$comp0 - other.$comp0 $(, self.$compN - other.$compN )*)
}
}
)
)
macro_rules! scalar_mul_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
impl<N: Mul<N, N>> $t<N> {
#[inline]
/// Scalar multiplication of each component of this matrix by a scalar.
pub fn scalar_mul(&self, other: &N) -> $t<N> {
$t::new(self.$comp0 * *other $(, self.$compN * *other )*)
}
}
)
)
macro_rules! scalar_div_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
impl<N: Div<N, N>> $t<N> {
#[inline]
/// Scalar division of each component of this matrix by a scalar.
pub fn scalar_div(&self, other: &N) -> $t<N> {
$t::new(self.$comp0 / *other $(, self.$compN / *other )*)
}
}
)
)
macro_rules! scalar_add_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
impl<N: Add<N, N>> ScalarAdd<N> for $t<N> {
#[inline]
fn scalar_add(&self, other: &N) -> $t<N> {
$t::new(self.$comp0 + *other $(, self.$compN + *other )*)
}
#[inline]
fn scalar_add_inplace(&mut self, other: &N) {
self.$comp0 = self.$comp0 + *other;
$(self.$compN = self.$compN + *other; )*
}
}
)
)
macro_rules! scalar_sub_impl(
($t: ident, $comp0: ident $(,$compN: ident)*) => (
impl<N: Sub<N, N>> ScalarSub<N> for $t<N> {
#[inline]
fn scalar_sub(&self, other: &N) -> $t<N> {
$t::new(self.$comp0 - *other $(, self.$compN - *other )*)
}
#[inline]
fn scalar_sub_inplace(&mut self, other: &N) {
self.$comp0 = self.$comp0 - *other;
$(self.$compN = self.$compN - *other; )*
}
}
)
)
macro_rules! iterable_impl(
($t: ident, $dim: expr) => (
impl<N> Iterable<N> for $t<N> {
#[inline]
fn iter<'l>(&'l self) -> VecIterator<'l, N> {
unsafe {
cast::transmute::<&'l $t<N>, &'l [N, ..$dim * $dim]>(self).iter()
}
}
}
)
)
macro_rules! iterable_mut_impl(
($t: ident, $dim: expr) => (
impl<N> IterableMut<N> for $t<N> {
#[inline]
fn mut_iter<'l>(&'l mut self) -> VecMutIterator<'l, N> {
unsafe {
cast::transmute::<&'l mut $t<N>, &'l mut [N, ..$dim * $dim]>(self).mut_iter()
}
}
}
)
)
macro_rules! one_impl(
($t: ident, $value0: expr $(, $valueN: expr)* ) => (
impl<N: Clone + One + Zero> One for $t<N> {
#[inline]
fn one() -> $t<N> {
$t::new($value0() $(, $valueN() )*)
}
}
)
)
macro_rules! dim_impl(
($t: ident, $dim: expr) => (
impl<N> Dim for $t<N> {
#[inline]
fn dim(_: Option<$t<N>>) -> uint {
$dim
}
}
)
)
macro_rules! indexable_impl(
($t: ident, $dim: expr) => (
impl<N: Clone> Indexable<(uint, uint), N> for $t<N> {
#[inline]
fn at(&self, (i, j): (uint, uint)) -> N {
unsafe {
cast::transmute::<&$t<N>, &[N, ..$dim * $dim]>(self)[i * $dim + j].clone()
}
}
#[inline]
fn set(&mut self, (i, j): (uint, uint), val: N) {
unsafe {
cast::transmute::<&mut $t<N>, &mut [N, ..$dim * $dim]>(self)[i * $dim + j] = val
}
}
#[inline]
fn swap(&mut self, (i1, j1): (uint, uint), (i2, j2): (uint, uint)) {
unsafe {
cast::transmute::<&mut $t<N>, &mut [N, ..$dim * $dim]>(self)
.swap(i1 * $dim + j1, i2 * $dim + j2)
}
}
}
)
)
macro_rules! column_impl(
($t: ident, $tv: ident, $dim: expr) => (
impl<N: Clone + Zero> Column<$tv<N>> for $t<N> {
#[inline]
fn set_column(&mut self, col: uint, v: $tv<N>) {
for (i, e) in v.iter().enumerate() {
self.set((i, col), e.clone());
}
}
#[inline]
fn column(&self, col: uint) -> $tv<N> {
let mut res: $tv<N> = Zero::zero();
for (i, e) in res.mut_iter().enumerate() {
*e = self.at((i, col));
}
res
}
}
)
)
macro_rules! row_impl(
($t: ident, $tv: ident, $dim: expr) => (
impl<N: Clone + Zero> Row<$tv<N>> for $t<N> {
#[inline]
fn set_row(&mut self, row: uint, v: $tv<N>) {
for (i, e) in v.iter().enumerate() {
self.set((row, i), e.clone());
}
}
#[inline]
fn row(&self, row: uint) -> $tv<N> {
let mut res: $tv<N> = Zero::zero();
for (i, e) in res.mut_iter().enumerate() {
*e = self.at((row, i));
}
res
}
}
)
)
macro_rules! mul_impl(
($t: ident, $dim: expr) => (
impl<N: Clone + Num> Mul<$t<N>, $t<N>> for $t<N> {
#[inline]
fn mul(&self, other: &$t<N>) -> $t<N> {
let mut res: $t<N> = Zero::zero();
for i in range(0u, $dim) {
for j in range(0u, $dim) {
let mut acc: N = Zero::zero();
for k in range(0u, $dim) {
acc = acc + self.at((i, k)) * other.at((k, j));
}
res.set((i, j), acc);
}
}
res
}
}
)
)
macro_rules! rmul_impl(
($t: ident, $v: ident, $dim: expr) => (
impl<N: Clone + Num> RMul<$v<N>> for $t<N> {
#[inline]
fn rmul(&self, other: &$v<N>) -> $v<N> {
let mut res : $v<N> = Zero::zero();
for i in range(0u, $dim) {
for j in range(0u, $dim) {
let val = res.at(i) + other.at(j) * self.at((i, j));
res.set(i, val)
}
}
res
}
}
)
)
macro_rules! lmul_impl(
($t: ident, $v: ident, $dim: expr) => (
impl<N: Clone + Num> LMul<$v<N>> for $t<N> {
#[inline]
fn lmul(&self, other: &$v<N>) -> $v<N> {
let mut res : $v<N> = Zero::zero();
for i in range(0u, $dim) {
for j in range(0u, $dim) {
let val = res.at(i) + other.at(j) * self.at((j, i));
res.set(i, val)
}
}
res
}
}
)
)
macro_rules! transform_impl(
($t: ident, $v: ident) => (
impl<N: Clone + Num + Eq>
Transform<$v<N>> for $t<N> {
#[inline]
fn transform(&self, v: &$v<N>) -> $v<N> {
self.rmul(v)
}
#[inline]
fn inv_transform(&self, v: &$v<N>) -> $v<N> {
match self.inverse() {
Some(t) => t.transform(v),
None => fail!("Cannot use inv_transform on a non-inversible matrix.")
}
}
}
)
)
macro_rules! inv_impl(
($t: ident, $dim: expr) => (
impl<N: Clone + Eq + Num>
Inv for $t<N> {
#[inline]
fn inverse(&self) -> Option<$t<N>> {
let mut res : $t<N> = self.clone();
if res.inplace_inverse() {
Some(res)
}
else {
None
}
}
fn inplace_inverse(&mut self) -> bool {
let mut res: $t<N> = One::one();
let _0N: N = Zero::zero();
// inversion using Gauss-Jordan elimination
for k in range(0u, $dim) {
// search a non-zero value on the k-th column
// FIXME: would it be worth it to spend some more time searching for the
// max instead?
let mut n0 = k; // index of a non-zero entry
while (n0 != $dim) {
if self.at((n0, k)) != _0N {
break;
}
n0 = n0 + 1;
}
if n0 == $dim {
return false
}
// swap pivot line
if n0 != k {
for j in range(0u, $dim) {
self.swap((n0, j), (k, j));
res.swap((n0, j), (k, j));
}
}
let pivot = self.at((k, k));
for j in range(k, $dim) {
let selfval = self.at((k, j)) / pivot;
self.set((k, j), selfval);
}
for j in range(0u, $dim) {
let resval = res.at((k, j)) / pivot;
res.set((k, j), resval);
}
for l in range(0u, $dim) {
if l != k {
let normalizer = self.at((l, k));
for j in range(k, $dim) {
let selfval = self.at((l, j)) - self.at((k, j)) * normalizer;
self.set((l, j), selfval);
}
for j in range(0u, $dim) {
let resval = res.at((l, j)) - res.at((k, j)) * normalizer;
res.set((l, j), resval);
}
}
}
}
*self = res;
true
}
}
)
)
macro_rules! transpose_impl(
($t: ident, $dim: expr) => (
impl<N: Clone> Transpose for $t<N> {
#[inline]
fn transposed(&self) -> $t<N> {
let mut res = self.clone();
res.transpose();
res
}
#[inline]
fn transpose(&mut self) {
for i in range(1u, $dim) {
for j in range(0u, i) {
self.swap((i, j), (j, i))
}
}
}
}
)
)
macro_rules! approx_eq_impl(
($t: ident) => (
impl<N: ApproxEq<N>> ApproxEq<N> for $t<N> {
#[inline]
fn approx_epsilon() -> N {
fail!("approx_epsilon is broken since rust revision 8693943676487c01fa09f5f3daf0df6a1f71e24d.")
// ApproxEq::<N>::approx_epsilon()
}
#[inline]
fn approx_eq(&self, other: &$t<N>) -> bool {
let mut zip = self.iter().zip(other.iter());
do zip.all |(a, b)| {
a.approx_eq(b)
}
}
#[inline]
fn approx_eq_eps(&self, other: &$t<N>, epsilon: &N) -> bool {
let mut zip = self.iter().zip(other.iter());
do zip.all |(a, b)| {
a.approx_eq_eps(b, epsilon)
}
}
}
)
)
macro_rules! to_homogeneous_impl(
($t: ident, $t2: ident, $dim: expr, $dim2: expr) => (
impl<N: One + Zero + Clone> ToHomogeneous<$t2<N>> for $t<N> {
#[inline]
fn to_homogeneous(&self) -> $t2<N> {
let mut res: $t2<N> = One::one();
for i in range(0u, $dim) {
for j in range(0u, $dim) {
res.set((i, j), self.at((i, j)))
}
}
res
}
}
)
)
macro_rules! from_homogeneous_impl(
($t: ident, $t2: ident, $dim: expr, $dim2: expr) => (
impl<N: One + Zero + Clone> FromHomogeneous<$t2<N>> for $t<N> {
#[inline]
fn from(m: &$t2<N>) -> $t<N> {
let mut res: $t<N> = One::one();
for i in range(0u, $dim2) {
for j in range(0u, $dim2) {
res.set((i, j), m.at((i, j)))
}
}
// FIXME: do we have to deal the lost components
// (like if the 1 is not a 1… do we have to divide?)
res
}
}
)
)
macro_rules! outer_impl(
($t: ident, $m: ident) => (
impl<N: Mul<N, N> + Zero + Clone> Outer<$t<N>, $m<N>> for $t<N> {
#[inline]
fn outer(&self, other: &$t<N>) -> $m<N> {
let mut res: $m<N> = Zero::zero();
for i in range(0u, Dim::dim(None::<$t<N>>)) {
for j in range(0u, Dim::dim(None::<$t<N>>)) {
res.set((i, j), self.at(i) * other.at(j))
}
}
res
}
}
)
)