forked from M-Labs/nalgebra
364 lines
13 KiB
Rust
364 lines
13 KiB
Rust
//! Functionality for integrating `nalgebra-sparse` with `proptest`.
|
|
//!
|
|
//! **This module is only available if the `proptest-support` feature is enabled**.
|
|
//!
|
|
//! The strategies provided here are generally expected to be able to generate the entire range
|
|
//! of possible outputs given the constraints on dimensions and values. However, there are no
|
|
//! particular guarantees on the distribution of possible values.
|
|
use crate::coo::CooMatrix;
|
|
use crate::csc::CscMatrix;
|
|
use crate::csr::CsrMatrix;
|
|
use crate::pattern::SparsityPattern;
|
|
use nalgebra::proptest::DimRange;
|
|
use nalgebra::{Dim, Scalar};
|
|
use proptest::collection::{btree_set, hash_map, vec};
|
|
use proptest::prelude::*;
|
|
use proptest::sample::Index;
|
|
use std::cmp::min;
|
|
use std::iter::repeat;
|
|
|
|
fn dense_row_major_coord_strategy(
|
|
nrows: usize,
|
|
ncols: usize,
|
|
nnz: usize,
|
|
) -> impl Strategy<Value = Vec<(usize, usize)>> {
|
|
assert!(nnz <= nrows * ncols);
|
|
let mut booleans = vec![true; nnz];
|
|
booleans.append(&mut vec![false; (nrows * ncols) - nnz]);
|
|
// Make sure that exactly `nnz` of the booleans are true
|
|
Just(booleans)
|
|
// Need to shuffle to make sure they are randomly distributed
|
|
.prop_shuffle()
|
|
.prop_map(move |booleans| {
|
|
booleans
|
|
.into_iter()
|
|
.enumerate()
|
|
.filter_map(|(index, is_entry)| {
|
|
if is_entry {
|
|
// Convert linear index to row/col pair
|
|
let i = index / ncols;
|
|
let j = index % ncols;
|
|
Some((i, j))
|
|
} else {
|
|
None
|
|
}
|
|
})
|
|
.collect::<Vec<_>>()
|
|
})
|
|
}
|
|
|
|
/// A strategy for generating `nnz` triplets.
|
|
///
|
|
/// This strategy should generally only be used when `nnz` is close to `nrows * ncols`.
|
|
fn dense_triplet_strategy<T>(
|
|
value_strategy: T,
|
|
nrows: usize,
|
|
ncols: usize,
|
|
nnz: usize,
|
|
) -> impl Strategy<Value = Vec<(usize, usize, T::Value)>>
|
|
where
|
|
T: Strategy + Clone + 'static,
|
|
T::Value: Scalar,
|
|
{
|
|
assert!(nnz <= nrows * ncols);
|
|
|
|
// Construct a number of booleans of which exactly `nnz` are true.
|
|
let booleans: Vec<_> = repeat(true)
|
|
.take(nnz)
|
|
.chain(repeat(false))
|
|
.take(nrows * ncols)
|
|
.collect();
|
|
|
|
Just(booleans)
|
|
// Shuffle the booleans so that they are randomly distributed
|
|
.prop_shuffle()
|
|
// Convert the booleans into a list of coordinate pairs
|
|
.prop_map(move |booleans| {
|
|
booleans
|
|
.into_iter()
|
|
.enumerate()
|
|
.filter_map(|(index, is_entry)| {
|
|
if is_entry {
|
|
// Convert linear index to row/col pair
|
|
let i = index / ncols;
|
|
let j = index % ncols;
|
|
Some((i, j))
|
|
} else {
|
|
None
|
|
}
|
|
})
|
|
.collect::<Vec<_>>()
|
|
})
|
|
// Assign values to each coordinate pair in order to generate a list of triplets
|
|
.prop_flat_map(move |coords| {
|
|
vec![value_strategy.clone(); coords.len()].prop_map(move |values| {
|
|
coords
|
|
.clone()
|
|
.into_iter()
|
|
.zip(values)
|
|
.map(|((i, j), v)| (i, j, v))
|
|
.collect::<Vec<_>>()
|
|
})
|
|
})
|
|
}
|
|
|
|
/// A strategy for generating `nnz` triplets.
|
|
///
|
|
/// This strategy should generally only be used when `nnz << nrows * ncols`. If `nnz` is too
|
|
/// close to `nrows * ncols` it may fail due to excessive rejected samples.
|
|
fn sparse_triplet_strategy<T>(
|
|
value_strategy: T,
|
|
nrows: usize,
|
|
ncols: usize,
|
|
nnz: usize,
|
|
) -> impl Strategy<Value = Vec<(usize, usize, T::Value)>>
|
|
where
|
|
T: Strategy + Clone + 'static,
|
|
T::Value: Scalar,
|
|
{
|
|
// Have to handle the zero case: proptest doesn't like empty ranges (i.e. 0 .. 0)
|
|
let row_index_strategy = if nrows > 0 { 0..nrows } else { 0..1 };
|
|
let col_index_strategy = if ncols > 0 { 0..ncols } else { 0..1 };
|
|
let coord_strategy = (row_index_strategy, col_index_strategy);
|
|
hash_map(coord_strategy, value_strategy.clone(), nnz)
|
|
.prop_map(|hash_map| {
|
|
let triplets: Vec<_> = hash_map.into_iter().map(|((i, j), v)| (i, j, v)).collect();
|
|
triplets
|
|
})
|
|
// Although order in the hash map is unspecified, it's not necessarily *random*
|
|
// - or, in particular, it does not necessarily sample the whole space of possible outcomes -
|
|
// so we additionally shuffle the triplets
|
|
.prop_shuffle()
|
|
}
|
|
|
|
/// A strategy for producing COO matrices without duplicate entries.
|
|
///
|
|
/// The values of the matrix are picked from the provided `value_strategy`, while the size of the
|
|
/// generated matrices is determined by the ranges `rows` and `cols`. The number of explicitly
|
|
/// stored entries is bounded from above by `max_nonzeros`. Note that the matrix might still
|
|
/// contain explicitly stored zeroes if the value strategy is capable of generating zero values.
|
|
pub fn coo_no_duplicates<T>(
|
|
value_strategy: T,
|
|
rows: impl Into<DimRange>,
|
|
cols: impl Into<DimRange>,
|
|
max_nonzeros: usize,
|
|
) -> impl Strategy<Value = CooMatrix<T::Value>>
|
|
where
|
|
T: Strategy + Clone + 'static,
|
|
T::Value: Scalar,
|
|
{
|
|
(
|
|
rows.into().to_range_inclusive(),
|
|
cols.into().to_range_inclusive(),
|
|
)
|
|
.prop_flat_map(move |(nrows, ncols)| {
|
|
let max_nonzeros = min(max_nonzeros, nrows * ncols);
|
|
let size_range = 0..=max_nonzeros;
|
|
let value_strategy = value_strategy.clone();
|
|
|
|
size_range
|
|
.prop_flat_map(move |nnz| {
|
|
let value_strategy = value_strategy.clone();
|
|
if nnz as f64 > 0.10 * (nrows as f64) * (ncols as f64) {
|
|
// If the number of nnz is sufficiently dense, then use the dense
|
|
// sample strategy
|
|
dense_triplet_strategy(value_strategy, nrows, ncols, nnz).boxed()
|
|
} else {
|
|
// Otherwise, use a hash map strategy so that we can get a sparse sampling
|
|
// (so that complexity is rather on the order of max_nnz than nrows * ncols)
|
|
sparse_triplet_strategy(value_strategy, nrows, ncols, nnz).boxed()
|
|
}
|
|
})
|
|
.prop_map(move |triplets| {
|
|
let mut coo = CooMatrix::new(nrows, ncols);
|
|
for (i, j, v) in triplets {
|
|
coo.push(i, j, v);
|
|
}
|
|
coo
|
|
})
|
|
})
|
|
}
|
|
|
|
/// A strategy for producing COO matrices with duplicate entries.
|
|
///
|
|
/// The values of the matrix are picked from the provided `value_strategy`, while the size of the
|
|
/// generated matrices is determined by the ranges `rows` and `cols`. Note that the values
|
|
/// only apply to individual entries, and since this strategy can generate duplicate entries,
|
|
/// the matrix will generally have values outside the range determined by `value_strategy` when
|
|
/// converted to other formats, since the duplicate entries are summed together in this case.
|
|
///
|
|
/// The number of explicitly stored entries is bounded from above by `max_nonzeros`. The maximum
|
|
/// number of duplicate entries is determined by `max_duplicates`. Note that the matrix might still
|
|
/// contain explicitly stored zeroes if the value strategy is capable of generating zero values.
|
|
pub fn coo_with_duplicates<T>(
|
|
value_strategy: T,
|
|
rows: impl Into<DimRange>,
|
|
cols: impl Into<DimRange>,
|
|
max_nonzeros: usize,
|
|
max_duplicates: usize,
|
|
) -> impl Strategy<Value = CooMatrix<T::Value>>
|
|
where
|
|
T: Strategy + Clone + 'static,
|
|
T::Value: Scalar,
|
|
{
|
|
let coo_strategy = coo_no_duplicates(value_strategy.clone(), rows, cols, max_nonzeros);
|
|
let duplicate_strategy = vec((any::<Index>(), value_strategy.clone()), 0..=max_duplicates);
|
|
(coo_strategy, duplicate_strategy)
|
|
.prop_flat_map(|(coo, duplicates)| {
|
|
let mut triplets: Vec<(usize, usize, T::Value)> = coo
|
|
.triplet_iter()
|
|
.map(|(i, j, v)| (i, j, v.clone()))
|
|
.collect();
|
|
if !triplets.is_empty() {
|
|
let duplicates_iter: Vec<_> = duplicates
|
|
.into_iter()
|
|
.map(|(idx, val)| {
|
|
let (i, j, _) = idx.get(&triplets);
|
|
(*i, *j, val)
|
|
})
|
|
.collect();
|
|
triplets.extend(duplicates_iter);
|
|
}
|
|
// Make sure to shuffle so that the duplicates get mixed in with the non-duplicates
|
|
let shuffled = Just(triplets).prop_shuffle();
|
|
(Just(coo.nrows()), Just(coo.ncols()), shuffled)
|
|
})
|
|
.prop_map(move |(nrows, ncols, triplets)| {
|
|
let mut coo = CooMatrix::new(nrows, ncols);
|
|
for (i, j, v) in triplets {
|
|
coo.push(i, j, v);
|
|
}
|
|
coo
|
|
})
|
|
}
|
|
|
|
fn sparsity_pattern_from_row_major_coords<I>(
|
|
nmajor: usize,
|
|
nminor: usize,
|
|
coords: I,
|
|
) -> SparsityPattern
|
|
where
|
|
I: Iterator<Item = (usize, usize)> + ExactSizeIterator,
|
|
{
|
|
let mut minors = Vec::with_capacity(coords.len());
|
|
let mut offsets = Vec::with_capacity(nmajor + 1);
|
|
let mut current_major = 0;
|
|
offsets.push(0);
|
|
for (idx, (i, j)) in coords.enumerate() {
|
|
assert!(i >= current_major);
|
|
assert!(
|
|
i < nmajor && j < nminor,
|
|
"Generated coords are out of bounds"
|
|
);
|
|
while current_major < i {
|
|
offsets.push(idx);
|
|
current_major += 1;
|
|
}
|
|
minors.push(j);
|
|
}
|
|
|
|
while current_major < nmajor {
|
|
offsets.push(minors.len());
|
|
current_major += 1;
|
|
}
|
|
|
|
assert_eq!(offsets.first().unwrap(), &0);
|
|
assert_eq!(offsets.len(), nmajor + 1);
|
|
|
|
SparsityPattern::try_from_offsets_and_indices(nmajor, nminor, offsets, minors)
|
|
.expect("Internal error: Generated sparsity pattern is invalid")
|
|
}
|
|
|
|
/// A strategy for generating sparsity patterns.
|
|
pub fn sparsity_pattern(
|
|
major_lanes: impl Into<DimRange>,
|
|
minor_lanes: impl Into<DimRange>,
|
|
max_nonzeros: usize,
|
|
) -> impl Strategy<Value = SparsityPattern> {
|
|
(
|
|
major_lanes.into().to_range_inclusive(),
|
|
minor_lanes.into().to_range_inclusive(),
|
|
)
|
|
.prop_flat_map(move |(nmajor, nminor)| {
|
|
let max_nonzeros = min(nmajor * nminor, max_nonzeros);
|
|
(Just(nmajor), Just(nminor), 0..=max_nonzeros)
|
|
})
|
|
.prop_flat_map(move |(nmajor, nminor, nnz)| {
|
|
if 10 * nnz < nmajor * nminor {
|
|
// If nnz is small compared to a dense matrix, then use a sparse sampling strategy
|
|
btree_set((0..nmajor, 0..nminor), nnz)
|
|
.prop_map(move |coords| {
|
|
sparsity_pattern_from_row_major_coords(nmajor, nminor, coords.into_iter())
|
|
})
|
|
.boxed()
|
|
} else {
|
|
// If the required number of nonzeros is sufficiently dense,
|
|
// we instead use a dense sampling
|
|
dense_row_major_coord_strategy(nmajor, nminor, nnz)
|
|
.prop_map(move |coords| {
|
|
let coords = coords.into_iter();
|
|
sparsity_pattern_from_row_major_coords(nmajor, nminor, coords)
|
|
})
|
|
.boxed()
|
|
}
|
|
})
|
|
}
|
|
|
|
/// A strategy for generating CSR matrices.
|
|
pub fn csr<T>(
|
|
value_strategy: T,
|
|
rows: impl Into<DimRange>,
|
|
cols: impl Into<DimRange>,
|
|
max_nonzeros: usize,
|
|
) -> impl Strategy<Value = CsrMatrix<T::Value>>
|
|
where
|
|
T: Strategy + Clone + 'static,
|
|
T::Value: Scalar,
|
|
{
|
|
let rows = rows.into();
|
|
let cols = cols.into();
|
|
sparsity_pattern(
|
|
rows.lower_bound().value()..=rows.upper_bound().value(),
|
|
cols.lower_bound().value()..=cols.upper_bound().value(),
|
|
max_nonzeros,
|
|
)
|
|
.prop_flat_map(move |pattern| {
|
|
let nnz = pattern.nnz();
|
|
let values = vec![value_strategy.clone(); nnz];
|
|
(Just(pattern), values)
|
|
})
|
|
.prop_map(|(pattern, values)| {
|
|
CsrMatrix::try_from_pattern_and_values(pattern, values)
|
|
.expect("Internal error: Generated CsrMatrix is invalid")
|
|
})
|
|
}
|
|
|
|
/// A strategy for generating CSC matrices.
|
|
pub fn csc<T>(
|
|
value_strategy: T,
|
|
rows: impl Into<DimRange>,
|
|
cols: impl Into<DimRange>,
|
|
max_nonzeros: usize,
|
|
) -> impl Strategy<Value = CscMatrix<T::Value>>
|
|
where
|
|
T: Strategy + Clone + 'static,
|
|
T::Value: Scalar,
|
|
{
|
|
let rows = rows.into();
|
|
let cols = cols.into();
|
|
sparsity_pattern(
|
|
cols.lower_bound().value()..=cols.upper_bound().value(),
|
|
rows.lower_bound().value()..=rows.upper_bound().value(),
|
|
max_nonzeros,
|
|
)
|
|
.prop_flat_map(move |pattern| {
|
|
let nnz = pattern.nnz();
|
|
let values = vec![value_strategy.clone(); nnz];
|
|
(Just(pattern), values)
|
|
})
|
|
.prop_map(|(pattern, values)| {
|
|
CscMatrix::try_from_pattern_and_values(pattern, values)
|
|
.expect("Internal error: Generated CscMatrix is invalid")
|
|
})
|
|
}
|