forked from M-Labs/nalgebra
106 lines
3.3 KiB
Rust
106 lines
3.3 KiB
Rust
#[cfg(feature = "proptest-support")]
|
|
mod proptest_tests {
|
|
macro_rules! gen_tests(
|
|
($module: ident, $scalar: expr) => {
|
|
mod $module {
|
|
#[allow(unused_imports)]
|
|
use crate::core::helper::{RandScalar, RandComplex};
|
|
|
|
use crate::proptest::*;
|
|
use proptest::{prop_assert, proptest};
|
|
|
|
proptest! {
|
|
#[test]
|
|
fn bidiagonal(m in dmatrix_($scalar)) {
|
|
let bidiagonal = m.clone().bidiagonalize();
|
|
let (u, d, v_t) = bidiagonal.unpack();
|
|
|
|
prop_assert!(relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7))
|
|
}
|
|
|
|
#[test]
|
|
fn bidiagonal_static_5_3(m in matrix5x3_($scalar)) {
|
|
let bidiagonal = m.bidiagonalize();
|
|
let (u, d, v_t) = bidiagonal.unpack();
|
|
|
|
prop_assert!(relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7))
|
|
}
|
|
|
|
#[test]
|
|
fn bidiagonal_static_3_5(m in matrix3x5_($scalar)) {
|
|
let bidiagonal = m.bidiagonalize();
|
|
let (u, d, v_t) = bidiagonal.unpack();
|
|
|
|
prop_assert!(relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7))
|
|
}
|
|
|
|
#[test]
|
|
fn bidiagonal_static_square(m in matrix4_($scalar)) {
|
|
let bidiagonal = m.bidiagonalize();
|
|
let (u, d, v_t) = bidiagonal.unpack();
|
|
|
|
prop_assert!(relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7))
|
|
}
|
|
|
|
#[test]
|
|
fn bidiagonal_static_square_2x2(m in matrix2_($scalar)) {
|
|
let bidiagonal = m.bidiagonalize();
|
|
let (u, d, v_t) = bidiagonal.unpack();
|
|
|
|
prop_assert!(relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
);
|
|
|
|
gen_tests!(complex, complex_f64());
|
|
gen_tests!(f64, PROPTEST_F64);
|
|
}
|
|
|
|
#[test]
|
|
fn bidiagonal_identity() {
|
|
let m = na::DMatrix::<f64>::identity(10, 10);
|
|
let bidiagonal = m.clone().bidiagonalize();
|
|
let (u, d, v_t) = bidiagonal.unpack();
|
|
assert_eq!(m, &u * d * &v_t);
|
|
|
|
let m = na::DMatrix::<f64>::identity(10, 15);
|
|
let bidiagonal = m.clone().bidiagonalize();
|
|
let (u, d, v_t) = bidiagonal.unpack();
|
|
assert_eq!(m, &u * d * &v_t);
|
|
|
|
let m = na::DMatrix::<f64>::identity(15, 10);
|
|
let bidiagonal = m.clone().bidiagonalize();
|
|
let (u, d, v_t) = bidiagonal.unpack();
|
|
assert_eq!(m, &u * d * &v_t);
|
|
}
|
|
|
|
#[test]
|
|
fn bidiagonal_regression_issue_1313() {
|
|
let s = 6.123234e-16_f32;
|
|
let mut m = nalgebra::dmatrix![
|
|
10.0, 0.0, 0.0, 0.0, -10.0, 0.0, 0.0, 0.0;
|
|
s, 10.0, 0.0, 10.0, s, 0.0, 0.0, 0.0;
|
|
20.0, -20.0, 0.0, 20.0, 20.0, 0.0, 0.0, 0.0;
|
|
];
|
|
m.unscale_mut(m.camax());
|
|
let bidiagonal = m.clone().bidiagonalize();
|
|
let (u, d, v_t) = bidiagonal.unpack();
|
|
let m2 = &u * d * &v_t;
|
|
assert_relative_eq!(m, m2, epsilon = 1e-6);
|
|
}
|
|
|
|
#[test]
|
|
fn bidiagonal_regression_issue_1313_minimal() {
|
|
let s = 6.123234e-17_f32;
|
|
let m = nalgebra::dmatrix![
|
|
1.0, 0.0, -1.0;
|
|
s, 1.0, s;
|
|
];
|
|
let bidiagonal = m.clone().bidiagonalize();
|
|
let (u, d, v_t) = bidiagonal.unpack();
|
|
let m2 = &u * &d * &v_t;
|
|
assert_relative_eq!(m, m2, epsilon = 1e-6);
|
|
}
|