forked from M-Labs/nalgebra
294 lines
12 KiB
Rust
294 lines
12 KiB
Rust
#[cfg(feature = "serde-serialize")]
|
|
use serde::{Deserialize, Serialize};
|
|
|
|
use alga::general::ComplexField;
|
|
|
|
use crate::allocator::Allocator;
|
|
use crate::base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, SquareMatrix, Vector};
|
|
use crate::constraint::{SameNumberOfRows, ShapeConstraint};
|
|
use crate::dimension::{Dim, DimAdd, DimSum, DimDiff, DimSub, Dynamic, U1};
|
|
use crate::storage::{Storage, StorageMut};
|
|
use crate::base::allocator::Reallocator;
|
|
|
|
/// The Cholesky decomposition of a symmetric-definite-positive matrix.
|
|
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
|
#[cfg_attr(
|
|
feature = "serde-serialize",
|
|
serde(bound(serialize = "DefaultAllocator: Allocator<N, D>,
|
|
MatrixN<N, D>: Serialize"))
|
|
)]
|
|
#[cfg_attr(
|
|
feature = "serde-serialize",
|
|
serde(bound(deserialize = "DefaultAllocator: Allocator<N, D>,
|
|
MatrixN<N, D>: Deserialize<'de>"))
|
|
)]
|
|
#[derive(Clone, Debug)]
|
|
pub struct Cholesky<N: ComplexField, D: Dim>
|
|
where
|
|
DefaultAllocator: Allocator<N, D, D>,
|
|
{
|
|
chol: MatrixN<N, D>,
|
|
}
|
|
|
|
impl<N: ComplexField, D: Dim> Copy for Cholesky<N, D>
|
|
where
|
|
DefaultAllocator: Allocator<N, D, D>,
|
|
MatrixN<N, D>: Copy,
|
|
{
|
|
}
|
|
|
|
impl<N: ComplexField, D: DimSub<Dynamic>> Cholesky<N, D>
|
|
where
|
|
DefaultAllocator: Allocator<N, D, D>,
|
|
{
|
|
/// Attempts to compute the Cholesky decomposition of `matrix`.
|
|
///
|
|
/// Returns `None` if the input matrix is not definite-positive. The input matrix is assumed
|
|
/// to be symmetric and only the lower-triangular part is read.
|
|
pub fn new(mut matrix: MatrixN<N, D>) -> Option<Self> {
|
|
assert!(matrix.is_square(), "The input matrix must be square.");
|
|
|
|
let n = matrix.nrows();
|
|
|
|
for j in 0..n {
|
|
for k in 0..j {
|
|
let factor = unsafe { -*matrix.get_unchecked((j, k)) };
|
|
|
|
let (mut col_j, col_k) = matrix.columns_range_pair_mut(j, k);
|
|
let mut col_j = col_j.rows_range_mut(j..);
|
|
let col_k = col_k.rows_range(j..);
|
|
|
|
col_j.axpy(factor.conjugate(), &col_k, N::one());
|
|
}
|
|
|
|
let diag = unsafe { *matrix.get_unchecked((j, j)) };
|
|
if !diag.is_zero() {
|
|
if let Some(denom) = diag.try_sqrt() {
|
|
unsafe {
|
|
*matrix.get_unchecked_mut((j, j)) = denom;
|
|
}
|
|
|
|
let mut col = matrix.slice_range_mut(j + 1.., j);
|
|
col /= denom;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// The diagonal element is either zero or its square root could not
|
|
// be taken (e.g. for negative real numbers).
|
|
return None;
|
|
}
|
|
|
|
Some(Cholesky { chol: matrix })
|
|
}
|
|
|
|
/// Retrieves the lower-triangular factor of the Cholesky decomposition with its strictly
|
|
/// upper-triangular part filled with zeros.
|
|
pub fn unpack(mut self) -> MatrixN<N, D> {
|
|
self.chol.fill_upper_triangle(N::zero(), 1);
|
|
self.chol
|
|
}
|
|
|
|
/// Retrieves the lower-triangular factor of the Cholesky decomposition, without zeroing-out
|
|
/// its strict upper-triangular part.
|
|
///
|
|
/// The values of the strict upper-triangular part are garbage and should be ignored by further
|
|
/// computations.
|
|
pub fn unpack_dirty(self) -> MatrixN<N, D> {
|
|
self.chol
|
|
}
|
|
|
|
/// Retrieves the lower-triangular factor of the Cholesky decomposition with its strictly
|
|
/// uppen-triangular part filled with zeros.
|
|
pub fn l(&self) -> MatrixN<N, D> {
|
|
self.chol.lower_triangle()
|
|
}
|
|
|
|
/// Retrieves the lower-triangular factor of the Cholesky decomposition, without zeroing-out
|
|
/// its strict upper-triangular part.
|
|
///
|
|
/// This is an allocation-less version of `self.l()`. The values of the strict upper-triangular
|
|
/// part are garbage and should be ignored by further computations.
|
|
pub fn l_dirty(&self) -> &MatrixN<N, D> {
|
|
&self.chol
|
|
}
|
|
|
|
/// Solves the system `self * x = b` where `self` is the decomposed matrix and `x` the unknown.
|
|
///
|
|
/// The result is stored on `b`.
|
|
pub fn solve_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<N, R2, C2, S2>)
|
|
where
|
|
S2: StorageMut<N, R2, C2>,
|
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
|
{
|
|
let _ = self.chol.solve_lower_triangular_mut(b);
|
|
let _ = self.chol.ad_solve_lower_triangular_mut(b);
|
|
}
|
|
|
|
/// Returns the solution of the system `self * x = b` where `self` is the decomposed matrix and
|
|
/// `x` the unknown.
|
|
pub fn solve<R2: Dim, C2: Dim, S2>(&self, b: &Matrix<N, R2, C2, S2>) -> MatrixMN<N, R2, C2>
|
|
where
|
|
S2: Storage<N, R2, C2>,
|
|
DefaultAllocator: Allocator<N, R2, C2>,
|
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
|
{
|
|
let mut res = b.clone_owned();
|
|
self.solve_mut(&mut res);
|
|
res
|
|
}
|
|
|
|
/// Computes the inverse of the decomposed matrix.
|
|
pub fn inverse(&self) -> MatrixN<N, D> {
|
|
let shape = self.chol.data.shape();
|
|
let mut res = MatrixN::identity_generic(shape.0, shape.1);
|
|
|
|
self.solve_mut(&mut res);
|
|
res
|
|
}
|
|
|
|
/// Given the Cholesky decomposition of a matrix `M`, a scalar `sigma` and a vector `v`,
|
|
/// performs a rank one update such that we end up with the decomposition of `M + sigma * v*v.adjoint()`.
|
|
#[inline]
|
|
pub fn rank_one_update<R2: Dim, S2>(&mut self, x: &Vector<N, R2, S2>, sigma: N::RealField)
|
|
where
|
|
S2: Storage<N, R2, U1>,
|
|
DefaultAllocator: Allocator<N, R2, U1>,
|
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
|
{
|
|
rank_one_update(&mut self.chol, x, sigma)
|
|
}
|
|
|
|
/// Updates the decomposition such that we get the decomposition of a matrix with the given column `col` in the `j`th position.
|
|
/// Since the matrix is square, an identical row will be added in the `j`th row.
|
|
pub fn insert_column<R2, S2>(
|
|
self,
|
|
j: usize,
|
|
col: &Vector<N, R2, S2>,
|
|
) -> Cholesky<N, DimSum<D, U1>>
|
|
where
|
|
D: DimAdd<U1>,
|
|
R2: Dim,
|
|
S2: Storage<N, R2, U1>,
|
|
DefaultAllocator: Reallocator<N, D, D, D, DimSum<D, U1>> + Reallocator<N, D, DimSum<D, U1>, DimSum<D, U1>, DimSum<D, U1>>,
|
|
ShapeConstraint: SameNumberOfRows<R2, DimSum<D, U1>>,
|
|
{
|
|
// for an explanation of the formulas, see https://en.wikipedia.org/wiki/Cholesky_decomposition#Updating_the_decomposition
|
|
let n = col.nrows();
|
|
assert_eq!(n, self.chol.nrows() + 1, "The new column must have the size of the factored matrix plus one.");
|
|
assert!(j < n, "j needs to be within the bound of the new matrix.");
|
|
|
|
// TODO what is the fastest way to produce the new matrix ?
|
|
let mut chol= self.chol.clone().insert_column(j, N::zero()).insert_row(j, N::zero());
|
|
|
|
// update the jth row
|
|
let top_left_corner = self.chol.slice_range(..j, ..j);
|
|
let col_jminus = col.rows_range(..j);
|
|
let new_rowj_adjoint = top_left_corner.solve_lower_triangular(&col_jminus).expect("Cholesky::insert_column : Unable to solve lower triangular system!");
|
|
new_rowj_adjoint.adjoint_to(&mut chol.slice_range_mut(j, ..j));
|
|
|
|
// update the center element
|
|
let center_element = N::sqrt(col[j] - N::from_real(new_rowj_adjoint.norm_squared()));
|
|
chol[(j,j)] = center_element;
|
|
|
|
// update the jth column
|
|
let bottom_left_corner = self.chol.slice_range(j.., ..j);
|
|
// new_colj = (col_jplus - bottom_left_corner * new_rowj.adjoint()) / center_element;
|
|
let mut new_colj = col.rows_range(j+1..).clone_owned();
|
|
new_colj.gemm(-N::one() / center_element, &bottom_left_corner, &new_rowj_adjoint, N::one() / center_element );
|
|
chol.slice_range_mut(j+1.., j).copy_from(&new_colj);
|
|
|
|
// update the bottom right corner
|
|
let mut bottom_right_corner = chol.slice_range_mut(j+1.., j+1..);
|
|
rank_one_update(&mut bottom_right_corner, &new_colj, -N::real(N::one()));
|
|
|
|
Cholesky { chol }
|
|
}
|
|
|
|
/// Updates the decomposition such that we get the decomposition of the factored matrix with its `j`th column removed.
|
|
/// Since the matrix is square, the `j`th row will also be removed.
|
|
pub fn remove_column(
|
|
self,
|
|
j: usize,
|
|
) -> Cholesky<N, DimDiff<D, U1>>
|
|
where
|
|
D: DimSub<U1>,
|
|
DefaultAllocator: Reallocator<N, D, D, D, DimDiff<D, U1>> + Reallocator<N, D, DimDiff<D, U1>, DimDiff<D, U1>, DimDiff<D, U1>>,
|
|
{
|
|
let n = self.chol.nrows();
|
|
assert!(n > 0, "The matrix needs at least one column.");
|
|
assert!(j < n, "j needs to be within the bound of the matrix.");
|
|
|
|
// TODO what is the fastest way to produce the new matrix ?
|
|
let mut chol= self.chol.clone().remove_column(j).remove_row(j);
|
|
|
|
// updates the bottom right corner
|
|
let mut bottom_right_corner = chol.slice_range_mut(j.., j..);
|
|
let old_colj = self.chol.slice_range(j+1.., j);
|
|
rank_one_update(&mut bottom_right_corner, &old_colj, N::real(N::one()));
|
|
|
|
Cholesky { chol }
|
|
}
|
|
}
|
|
|
|
impl<N: ComplexField, D: DimSub<Dynamic>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
|
where
|
|
DefaultAllocator: Allocator<N, D, D>,
|
|
{
|
|
/// Attempts to compute the Cholesky decomposition of this matrix.
|
|
///
|
|
/// Returns `None` if the input matrix is not definite-positive. The input matrix is assumed
|
|
/// to be symmetric and only the lower-triangular part is read.
|
|
pub fn cholesky(self) -> Option<Cholesky<N, D>> {
|
|
Cholesky::new(self.into_owned())
|
|
}
|
|
}
|
|
|
|
/// Given the Cholesky decomposition of a matrix `M`, a scalar `sigma` and a vector `v`,
|
|
/// performs a rank one update such that we end up with the decomposition of `M + sigma * v*v.adjoint()`.
|
|
///
|
|
/// This helper method is calling for by `rank_one_update` but also `insert_column` and `remove_column`
|
|
/// where it is used on a square slice of the decomposition
|
|
fn rank_one_update<N, D, S, Rx, Sx>(chol : &mut Matrix<N, D, D, S>, x: &Vector<N, Rx, Sx>, sigma: N::RealField)
|
|
where
|
|
N: ComplexField,
|
|
D: Dim,
|
|
Rx: Dim,
|
|
S: StorageMut<N, D, D>,
|
|
Sx: Storage<N, Rx, U1>,
|
|
DefaultAllocator: Allocator<N, Rx, U1>,
|
|
{
|
|
// heavily inspired by Eigen's `llt_rank_update_lower` implementation https://eigen.tuxfamily.org/dox/LLT_8h_source.html
|
|
let n = x.nrows();
|
|
assert_eq!(
|
|
n,
|
|
chol.nrows(),
|
|
"The input vector must be of the same size as the factorized matrix."
|
|
);
|
|
let mut x = x.clone_owned();
|
|
let mut beta = crate::one::<N::RealField>();
|
|
for j in 0..n {
|
|
// updates the diagonal
|
|
let diag = N::real(unsafe { *chol.get_unchecked((j, j)) });
|
|
let diag2 = diag * diag;
|
|
let xj = unsafe { *x.get_unchecked(j) };
|
|
let sigma_xj2 = sigma * N::modulus_squared(xj);
|
|
let gamma = diag2 * beta + sigma_xj2;
|
|
let new_diag = (diag2 + sigma_xj2 / beta).sqrt();
|
|
unsafe { *chol.get_unchecked_mut((j, j)) = N::from_real(new_diag) };
|
|
beta += sigma_xj2 / diag2;
|
|
// updates the terms of L
|
|
let mut xjplus = x.rows_range_mut(j + 1..);
|
|
let mut col_j = chol.slice_range_mut(j + 1.., j);
|
|
// temp_jplus -= (wj / N::from_real(diag)) * col_j;
|
|
xjplus.axpy(-xj / N::from_real(diag), &col_j, N::one());
|
|
if gamma != crate::zero::<N::RealField>() {
|
|
// col_j = N::from_real(nljj / diag) * col_j + (N::from_real(nljj * sigma / gamma) * N::conjugate(wj)) * temp_jplus;
|
|
col_j.axpy(
|
|
N::from_real(new_diag * sigma / gamma) * N::conjugate(xj),
|
|
&xjplus,
|
|
N::from_real(new_diag / diag),
|
|
);
|
|
}
|
|
}
|
|
} |