forked from M-Labs/nalgebra
258 lines
10 KiB
Rust
258 lines
10 KiB
Rust
use alga::linear::Transformation;
|
|
use na::{
|
|
self,
|
|
Vector1, Vector2, Vector3, Vector4, Vector5, Vector6,
|
|
RowVector1, RowVector2, RowVector3, RowVector4, RowVector5, RowVector6,
|
|
Matrix2, Matrix3, Matrix4, Matrix5, Matrix6,
|
|
Matrix2x3, Matrix2x4, Matrix2x5, Matrix2x6,
|
|
Matrix3x2, Matrix3x4, Matrix3x5, Matrix3x6,
|
|
Matrix4x2, Matrix4x3, Matrix4x5, Matrix4x6,
|
|
Matrix5x2, Matrix5x3, Matrix5x4, Matrix5x6,
|
|
Matrix6x2, Matrix6x3, Matrix6x4, Matrix6x5,
|
|
Point3, Translation3, Isometry3, Similarity3, Affine3,
|
|
Projective3, Transform3, Rotation3, UnitQuaternion};
|
|
|
|
|
|
#[cfg(feature = "arbitrary")]
|
|
quickcheck!{
|
|
fn translation_conversion(t: Translation3<f64>, v: Vector3<f64>, p: Point3<f64>) -> bool {
|
|
let iso: Isometry3<f64> = na::convert(t);
|
|
let sim: Similarity3<f64> = na::convert(t);
|
|
let aff: Affine3<f64> = na::convert(t);
|
|
let prj: Projective3<f64> = na::convert(t);
|
|
let tr: Transform3<f64> = na::convert(t);
|
|
|
|
t == na::try_convert(iso).unwrap() &&
|
|
t == na::try_convert(sim).unwrap() &&
|
|
t == na::try_convert(aff).unwrap() &&
|
|
t == na::try_convert(prj).unwrap() &&
|
|
t == na::try_convert(tr).unwrap() &&
|
|
|
|
t.transform_vector(&v) == iso * v &&
|
|
t.transform_vector(&v) == sim * v &&
|
|
t.transform_vector(&v) == aff * v &&
|
|
t.transform_vector(&v) == prj * v &&
|
|
t.transform_vector(&v) == tr * v &&
|
|
|
|
t * p == iso * p &&
|
|
t * p == sim * p &&
|
|
t * p == aff * p &&
|
|
t * p == prj * p &&
|
|
t * p == tr * p
|
|
}
|
|
|
|
fn rotation_conversion(r: Rotation3<f64>, v: Vector3<f64>, p: Point3<f64>) -> bool {
|
|
let uq: UnitQuaternion<f64> = na::convert(r);
|
|
let iso: Isometry3<f64> = na::convert(r);
|
|
let sim: Similarity3<f64> = na::convert(r);
|
|
let aff: Affine3<f64> = na::convert(r);
|
|
let prj: Projective3<f64> = na::convert(r);
|
|
let tr: Transform3<f64> = na::convert(r);
|
|
|
|
relative_eq!(r, na::try_convert(uq).unwrap(), epsilon = 1.0e-7) &&
|
|
relative_eq!(r, na::try_convert(iso).unwrap(), epsilon = 1.0e-7) &&
|
|
relative_eq!(r, na::try_convert(sim).unwrap(), epsilon = 1.0e-7) &&
|
|
r == na::try_convert(aff).unwrap() &&
|
|
r == na::try_convert(prj).unwrap() &&
|
|
r == na::try_convert(tr).unwrap() &&
|
|
|
|
// NOTE: we need relative_eq because Isometry and Similarity use quaternions.
|
|
relative_eq!(r * v, uq * v, epsilon = 1.0e-7) &&
|
|
relative_eq!(r * v, iso * v, epsilon = 1.0e-7) &&
|
|
relative_eq!(r * v, sim * v, epsilon = 1.0e-7) &&
|
|
r * v == aff * v &&
|
|
r * v == prj * v &&
|
|
r * v == tr * v &&
|
|
|
|
relative_eq!(r * p, uq * p, epsilon = 1.0e-7) &&
|
|
relative_eq!(r * p, iso * p, epsilon = 1.0e-7) &&
|
|
relative_eq!(r * p, sim * p, epsilon = 1.0e-7) &&
|
|
r * p == aff * p &&
|
|
r * p == prj * p &&
|
|
r * p == tr * p
|
|
}
|
|
|
|
fn unit_quaternion_conversion(uq: UnitQuaternion<f64>, v: Vector3<f64>, p: Point3<f64>) -> bool {
|
|
let rot: Rotation3<f64> = na::convert(uq);
|
|
let iso: Isometry3<f64> = na::convert(uq);
|
|
let sim: Similarity3<f64> = na::convert(uq);
|
|
let aff: Affine3<f64> = na::convert(uq);
|
|
let prj: Projective3<f64> = na::convert(uq);
|
|
let tr: Transform3<f64> = na::convert(uq);
|
|
|
|
uq == na::try_convert(iso).unwrap() &&
|
|
uq == na::try_convert(sim).unwrap() &&
|
|
relative_eq!(uq, na::try_convert(rot).unwrap(), epsilon = 1.0e-7) &&
|
|
relative_eq!(uq, na::try_convert(aff).unwrap(), epsilon = 1.0e-7) &&
|
|
relative_eq!(uq, na::try_convert(prj).unwrap(), epsilon = 1.0e-7) &&
|
|
relative_eq!(uq, na::try_convert(tr).unwrap(), epsilon = 1.0e-7) &&
|
|
|
|
// NOTE: iso and sim use unit quaternions for the rotation so conversions to them are exact.
|
|
relative_eq!(uq * v, rot * v, epsilon = 1.0e-7) &&
|
|
uq * v == iso * v &&
|
|
uq * v == sim * v &&
|
|
relative_eq!(uq * v, aff * v, epsilon = 1.0e-7) &&
|
|
relative_eq!(uq * v, prj * v, epsilon = 1.0e-7) &&
|
|
relative_eq!(uq * v, tr * v, epsilon = 1.0e-7) &&
|
|
|
|
relative_eq!(uq * p, rot * p, epsilon = 1.0e-7) &&
|
|
uq * p == iso * p &&
|
|
uq * p == sim * p &&
|
|
relative_eq!(uq * p, aff * p, epsilon = 1.0e-7) &&
|
|
relative_eq!(uq * p, prj * p, epsilon = 1.0e-7) &&
|
|
relative_eq!(uq * p, tr * p, epsilon = 1.0e-7)
|
|
}
|
|
|
|
fn isometry_conversion(iso: Isometry3<f64>, v: Vector3<f64>, p: Point3<f64>) -> bool {
|
|
let sim: Similarity3<f64> = na::convert(iso);
|
|
let aff: Affine3<f64> = na::convert(iso);
|
|
let prj: Projective3<f64> = na::convert(iso);
|
|
let tr: Transform3<f64> = na::convert(iso);
|
|
|
|
|
|
iso == na::try_convert(sim).unwrap() &&
|
|
relative_eq!(iso, na::try_convert(aff).unwrap(), epsilon = 1.0e-7) &&
|
|
relative_eq!(iso, na::try_convert(prj).unwrap(), epsilon = 1.0e-7) &&
|
|
relative_eq!(iso, na::try_convert(tr).unwrap(), epsilon = 1.0e-7) &&
|
|
|
|
iso * v == sim * v &&
|
|
relative_eq!(iso * v, aff * v, epsilon = 1.0e-7) &&
|
|
relative_eq!(iso * v, prj * v, epsilon = 1.0e-7) &&
|
|
relative_eq!(iso * v, tr * v, epsilon = 1.0e-7) &&
|
|
|
|
iso * p == sim * p &&
|
|
relative_eq!(iso * p, aff * p, epsilon = 1.0e-7) &&
|
|
relative_eq!(iso * p, prj * p, epsilon = 1.0e-7) &&
|
|
relative_eq!(iso * p, tr * p, epsilon = 1.0e-7)
|
|
}
|
|
|
|
fn similarity_conversion(sim: Similarity3<f64>, v: Vector3<f64>, p: Point3<f64>) -> bool {
|
|
let aff: Affine3<f64> = na::convert(sim);
|
|
let prj: Projective3<f64> = na::convert(sim);
|
|
let tr: Transform3<f64> = na::convert(sim);
|
|
|
|
relative_eq!(sim, na::try_convert(aff).unwrap(), epsilon = 1.0e-7) &&
|
|
relative_eq!(sim, na::try_convert(prj).unwrap(), epsilon = 1.0e-7) &&
|
|
relative_eq!(sim, na::try_convert(tr).unwrap(), epsilon = 1.0e-7) &&
|
|
|
|
relative_eq!(sim * v, aff * v, epsilon = 1.0e-7) &&
|
|
relative_eq!(sim * v, prj * v, epsilon = 1.0e-7) &&
|
|
relative_eq!(sim * v, tr * v, epsilon = 1.0e-7) &&
|
|
|
|
relative_eq!(sim * p, aff * p, epsilon = 1.0e-7) &&
|
|
relative_eq!(sim * p, prj * p, epsilon = 1.0e-7) &&
|
|
relative_eq!(sim * p, tr * p, epsilon = 1.0e-7)
|
|
}
|
|
|
|
// XXX test Transform
|
|
}
|
|
|
|
macro_rules! array_vector_conversion(
|
|
($($array_vector_conversion_i: ident, $Vector: ident, $SZ: expr);* $(;)*) => {$(
|
|
#[test]
|
|
fn $array_vector_conversion_i() {
|
|
let v = $Vector::from_fn(|i, _| i);
|
|
let arr: [usize; $SZ] = v.into();
|
|
let arr_ref = v.as_ref();
|
|
let v2 = $Vector::from(arr);
|
|
|
|
for i in 0 .. $SZ {
|
|
assert_eq!(arr[i], i);
|
|
assert_eq!(arr_ref[i], i);
|
|
}
|
|
|
|
assert_eq!(v, v2);
|
|
}
|
|
)*}
|
|
);
|
|
|
|
array_vector_conversion!(
|
|
array_vector_conversion_1, Vector1, 1;
|
|
array_vector_conversion_2, Vector2, 2;
|
|
array_vector_conversion_3, Vector3, 3;
|
|
array_vector_conversion_4, Vector4, 4;
|
|
array_vector_conversion_5, Vector5, 5;
|
|
array_vector_conversion_6, Vector6, 6;
|
|
);
|
|
|
|
macro_rules! array_row_vector_conversion(
|
|
($($array_vector_conversion_i: ident, $Vector: ident, $SZ: expr);* $(;)*) => {$(
|
|
#[test]
|
|
fn $array_vector_conversion_i() {
|
|
let v = $Vector::from_fn(|_, i| i);
|
|
let arr: [usize; $SZ] = v.into();
|
|
let arr_ref = v.as_ref();
|
|
let v2 = $Vector::from(arr);
|
|
|
|
for i in 0 .. $SZ {
|
|
assert_eq!(arr[i], i);
|
|
assert_eq!(arr_ref[i], i);
|
|
}
|
|
|
|
assert_eq!(v, v2);
|
|
}
|
|
)*}
|
|
);
|
|
|
|
array_row_vector_conversion!(
|
|
array_row_vector_conversion_1, RowVector1, 1;
|
|
array_row_vector_conversion_2, RowVector2, 2;
|
|
array_row_vector_conversion_3, RowVector3, 3;
|
|
array_row_vector_conversion_4, RowVector4, 4;
|
|
array_row_vector_conversion_5, RowVector5, 5;
|
|
array_row_vector_conversion_6, RowVector6, 6;
|
|
);
|
|
|
|
macro_rules! array_matrix_conversion(
|
|
($($array_matrix_conversion_i_j: ident, $Matrix: ident, ($NRows: expr, $NCols: expr));* $(;)*) => {$(
|
|
#[test]
|
|
fn $array_matrix_conversion_i_j() {
|
|
let m = $Matrix::from_fn(|i, j| i * 10 + j);
|
|
let arr: [[usize; $NRows]; $NCols] = m.into();
|
|
let arr_ref = m.as_ref();
|
|
let m2 = $Matrix::from(arr);
|
|
|
|
for i in 0 .. $NRows {
|
|
for j in 0 .. $NCols {
|
|
assert_eq!(arr[j][i], i * 10 + j);
|
|
assert_eq!(arr_ref[j][i], i * 10 + j);
|
|
}
|
|
}
|
|
|
|
assert_eq!(m, m2);
|
|
}
|
|
)*}
|
|
);
|
|
|
|
array_matrix_conversion!(
|
|
array_matrix_conversion_2_2, Matrix2, (2, 2);
|
|
array_matrix_conversion_2_3, Matrix2x3, (2, 3);
|
|
array_matrix_conversion_2_4, Matrix2x4, (2, 4);
|
|
array_matrix_conversion_2_5, Matrix2x5, (2, 5);
|
|
array_matrix_conversion_2_6, Matrix2x6, (2, 6);
|
|
|
|
array_matrix_conversion_3_2, Matrix3x2, (3, 2);
|
|
array_matrix_conversion_3_3, Matrix3, (3, 3);
|
|
array_matrix_conversion_3_4, Matrix3x4, (3, 4);
|
|
array_matrix_conversion_3_5, Matrix3x5, (3, 5);
|
|
array_matrix_conversion_3_6, Matrix3x6, (3, 6);
|
|
|
|
array_matrix_conversion_4_2, Matrix4x2, (4, 2);
|
|
array_matrix_conversion_4_3, Matrix4x3, (4, 3);
|
|
array_matrix_conversion_4_4, Matrix4, (4, 4);
|
|
array_matrix_conversion_4_5, Matrix4x5, (4, 5);
|
|
array_matrix_conversion_4_6, Matrix4x6, (4, 6);
|
|
|
|
array_matrix_conversion_5_2, Matrix5x2, (5, 2);
|
|
array_matrix_conversion_5_3, Matrix5x3, (5, 3);
|
|
array_matrix_conversion_5_4, Matrix5x4, (5, 4);
|
|
array_matrix_conversion_5_5, Matrix5, (5, 5);
|
|
array_matrix_conversion_5_6, Matrix5x6, (5, 6);
|
|
|
|
array_matrix_conversion_6_2, Matrix6x2, (6, 2);
|
|
array_matrix_conversion_6_3, Matrix6x3, (6, 3);
|
|
array_matrix_conversion_6_4, Matrix6x4, (6, 4);
|
|
array_matrix_conversion_6_5, Matrix6x5, (6, 5);
|
|
array_matrix_conversion_6_6, Matrix6, (6, 6);
|
|
);
|