nalgebra/src/geometry/quaternion_construction.rs

910 lines
31 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#[cfg(feature = "arbitrary")]
use crate::base::dimension::U4;
#[cfg(feature = "arbitrary")]
use crate::base::storage::Owned;
#[cfg(feature = "arbitrary")]
use quickcheck::{Arbitrary, Gen};
#[cfg(feature = "rand-no-std")]
use rand::{
distributions::{uniform::SampleUniform, Distribution, OpenClosed01, Standard, Uniform},
Rng,
};
use num::{One, Zero};
use simba::scalar::{RealField, SupersetOf};
use simba::simd::SimdBool;
use crate::base::dimension::U3;
use crate::base::storage::Storage;
use crate::base::{Matrix3, Matrix4, Unit, Vector, Vector3, Vector4};
use crate::{Scalar, SimdRealField};
use crate::geometry::{Quaternion, Rotation3, UnitQuaternion};
impl<T> Quaternion<T> {
/// Creates a quaternion from a 4D vector. The quaternion scalar part corresponds to the `w`
/// vector component.
#[inline]
// #[deprecated(note = "Use `::from` instead.")] // Don't deprecate because this one can be a const-fn.
pub const fn from_vector(vector: Vector4<T>) -> Self {
Self { coords: vector }
}
/// Creates a new quaternion from its individual components. Note that the arguments order does
/// **not** follow the storage order.
///
/// The storage order is `[ i, j, k, w ]` while the arguments for this functions are in the
/// order `(w, i, j, k)`.
///
/// # Example
/// ```
/// # use nalgebra::{Quaternion, Vector4};
/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// assert!(q.i == 2.0 && q.j == 3.0 && q.k == 4.0 && q.w == 1.0);
/// assert_eq!(*q.as_vector(), Vector4::new(2.0, 3.0, 4.0, 1.0));
/// ```
#[inline]
pub const fn new(w: T, i: T, j: T, k: T) -> Self {
Self::from_vector(Vector4::new(i, j, k, w))
}
/// Cast the components of `self` to another type.
///
/// # Example
/// ```
/// # use nalgebra::Quaternion;
/// let q = Quaternion::new(1.0f64, 2.0, 3.0, 4.0);
/// let q2 = q.cast::<f32>();
/// assert_eq!(q2, Quaternion::new(1.0f32, 2.0, 3.0, 4.0));
/// ```
pub fn cast<To: Scalar>(self) -> Quaternion<To>
where
T: Scalar,
To: SupersetOf<T>,
{
crate::convert(self)
}
}
impl<T: SimdRealField> Quaternion<T> {
/// Constructs a pure quaternion.
#[inline]
pub fn from_imag(vector: Vector3<T>) -> Self {
Self::from_parts(T::zero(), vector)
}
/// Creates a new quaternion from its scalar and vector parts. Note that the arguments order does
/// **not** follow the storage order.
///
/// The storage order is [ vector, scalar ].
///
/// # Example
/// ```
/// # use nalgebra::{Quaternion, Vector3, Vector4};
/// let w = 1.0;
/// let ijk = Vector3::new(2.0, 3.0, 4.0);
/// let q = Quaternion::from_parts(w, ijk);
/// assert!(q.i == 2.0 && q.j == 3.0 && q.k == 4.0 && q.w == 1.0);
/// assert_eq!(*q.as_vector(), Vector4::new(2.0, 3.0, 4.0, 1.0));
/// ```
#[inline]
// TODO: take a reference to `vector`?
pub fn from_parts<SB>(scalar: T, vector: Vector<T, U3, SB>) -> Self
where
SB: Storage<T, U3>,
{
Self::new(scalar, vector[0], vector[1], vector[2])
}
/// Constructs a real quaternion.
#[inline]
pub fn from_real(r: T) -> Self {
Self::from_parts(r, Vector3::zero())
}
/// The quaternion multiplicative identity.
///
/// # Example
/// ```
/// # use nalgebra::Quaternion;
/// let q = Quaternion::identity();
/// let q2 = Quaternion::new(1.0, 2.0, 3.0, 4.0);
///
/// assert_eq!(q * q2, q2);
/// assert_eq!(q2 * q, q2);
/// ```
#[inline]
pub fn identity() -> Self {
Self::from_real(T::one())
}
}
// TODO: merge with the previous block.
impl<T: SimdRealField> Quaternion<T>
where
T::Element: SimdRealField,
{
/// Creates a new quaternion from its polar decomposition.
///
/// Note that `axis` is assumed to be a unit vector.
// TODO: take a reference to `axis`?
pub fn from_polar_decomposition<SB>(scale: T, theta: T, axis: Unit<Vector<T, U3, SB>>) -> Self
where
SB: Storage<T, U3>,
{
let rot = UnitQuaternion::<T>::from_axis_angle(&axis, theta * crate::convert(2.0f64));
rot.into_inner() * scale
}
}
impl<T: SimdRealField> One for Quaternion<T>
where
T::Element: SimdRealField,
{
#[inline]
fn one() -> Self {
Self::identity()
}
}
impl<T: SimdRealField> Zero for Quaternion<T>
where
T::Element: SimdRealField,
{
#[inline]
fn zero() -> Self {
Self::from(Vector4::zero())
}
#[inline]
fn is_zero(&self) -> bool {
self.coords.is_zero()
}
}
#[cfg(feature = "rand-no-std")]
impl<T: SimdRealField> Distribution<Quaternion<T>> for Standard
where
Standard: Distribution<T>,
{
#[inline]
fn sample<'a, R: Rng + ?Sized>(&self, rng: &'a mut R) -> Quaternion<T> {
Quaternion::new(rng.gen(), rng.gen(), rng.gen(), rng.gen())
}
}
#[cfg(feature = "arbitrary")]
impl<T: SimdRealField + Arbitrary> Arbitrary for Quaternion<T>
where
Owned<T, U4>: Send,
{
#[inline]
fn arbitrary(g: &mut Gen) -> Self {
Self::new(
T::arbitrary(g),
T::arbitrary(g),
T::arbitrary(g),
T::arbitrary(g),
)
}
}
impl<T: SimdRealField> UnitQuaternion<T>
where
T::Element: SimdRealField,
{
/// The rotation identity.
///
/// # Example
/// ```
/// # use nalgebra::{UnitQuaternion, Vector3, Point3};
/// let q = UnitQuaternion::identity();
/// let q2 = UnitQuaternion::new(Vector3::new(1.0, 2.0, 3.0));
/// let v = Vector3::new_random();
/// let p = Point3::from(v);
///
/// assert_eq!(q * q2, q2);
/// assert_eq!(q2 * q, q2);
/// assert_eq!(q * v, v);
/// assert_eq!(q * p, p);
/// ```
#[inline]
pub fn identity() -> Self {
Self::new_unchecked(Quaternion::identity())
}
/// Cast the components of `self` to another type.
///
/// # Example
/// ```
/// # use nalgebra::UnitQuaternion;
/// # use approx::assert_relative_eq;
/// let q = UnitQuaternion::from_euler_angles(1.0f64, 2.0, 3.0);
/// let q2 = q.cast::<f32>();
/// assert_relative_eq!(q2, UnitQuaternion::from_euler_angles(1.0f32, 2.0, 3.0), epsilon = 1.0e-6);
/// ```
pub fn cast<To: Scalar>(self) -> UnitQuaternion<To>
where
To: SupersetOf<T>,
{
crate::convert(self)
}
/// Creates a new quaternion from a unit vector (the rotation axis) and an angle
/// (the rotation angle).
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{UnitQuaternion, Point3, Vector3};
/// let axis = Vector3::y_axis();
/// let angle = f32::consts::FRAC_PI_2;
/// // Point and vector being transformed in the tests.
/// let pt = Point3::new(4.0, 5.0, 6.0);
/// let vec = Vector3::new(4.0, 5.0, 6.0);
/// let q = UnitQuaternion::from_axis_angle(&axis, angle);
///
/// assert_eq!(q.axis().unwrap(), axis);
/// assert_eq!(q.angle(), angle);
/// assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
/// assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
///
/// // A zero vector yields an identity.
/// assert_eq!(UnitQuaternion::from_scaled_axis(Vector3::<f32>::zeros()), UnitQuaternion::identity());
/// ```
#[inline]
pub fn from_axis_angle<SB>(axis: &Unit<Vector<T, U3, SB>>, angle: T) -> Self
where
SB: Storage<T, U3>,
{
let (sang, cang) = (angle / crate::convert(2.0f64)).simd_sin_cos();
let q = Quaternion::from_parts(cang, axis.as_ref() * sang);
Self::new_unchecked(q)
}
/// Creates a new unit quaternion from a quaternion.
///
/// The input quaternion will be normalized.
#[inline]
pub fn from_quaternion(q: Quaternion<T>) -> Self {
Self::new_normalize(q)
}
/// Creates a new unit quaternion from Euler angles.
///
/// The primitive rotations are applied in order: 1 roll 2 pitch 3 yaw.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::UnitQuaternion;
/// let rot = UnitQuaternion::from_euler_angles(0.1, 0.2, 0.3);
/// let euler = rot.euler_angles();
/// assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6);
/// assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6);
/// assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn from_euler_angles(roll: T, pitch: T, yaw: T) -> Self {
let (sr, cr) = (roll * crate::convert(0.5f64)).simd_sin_cos();
let (sp, cp) = (pitch * crate::convert(0.5f64)).simd_sin_cos();
let (sy, cy) = (yaw * crate::convert(0.5f64)).simd_sin_cos();
let q = Quaternion::new(
cr * cp * cy + sr * sp * sy,
sr * cp * cy - cr * sp * sy,
cr * sp * cy + sr * cp * sy,
cr * cp * sy - sr * sp * cy,
);
Self::new_unchecked(q)
}
/// Builds an unit quaternion from a basis assumed to be orthonormal.
///
/// In order to get a valid unit-quaternion, the input must be an
/// orthonormal basis, i.e., all vectors are normalized, and the are
/// all orthogonal to each other. These invariants are not checked
/// by this method.
pub fn from_basis_unchecked(basis: &[Vector3<T>; 3]) -> Self {
let rot = Rotation3::from_basis_unchecked(basis);
Self::from_rotation_matrix(&rot)
}
/// Builds an unit quaternion from a rotation matrix.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Rotation3, UnitQuaternion, Vector3};
/// let axis = Vector3::y_axis();
/// let angle = 0.1;
/// let rot = Rotation3::from_axis_angle(&axis, angle);
/// let q = UnitQuaternion::from_rotation_matrix(&rot);
/// assert_relative_eq!(q.to_rotation_matrix(), rot, epsilon = 1.0e-6);
/// assert_relative_eq!(q.axis().unwrap(), rot.axis().unwrap(), epsilon = 1.0e-6);
/// assert_relative_eq!(q.angle(), rot.angle(), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn from_rotation_matrix(rotmat: &Rotation3<T>) -> Self {
// Robust matrix to quaternion transformation.
// See https://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion
let tr = rotmat[(0, 0)] + rotmat[(1, 1)] + rotmat[(2, 2)];
let quarter: T = crate::convert(0.25);
let res = tr.simd_gt(T::zero()).if_else3(
|| {
let denom = (tr + T::one()).simd_sqrt() * crate::convert(2.0);
Quaternion::new(
quarter * denom,
(rotmat[(2, 1)] - rotmat[(1, 2)]) / denom,
(rotmat[(0, 2)] - rotmat[(2, 0)]) / denom,
(rotmat[(1, 0)] - rotmat[(0, 1)]) / denom,
)
},
(
|| rotmat[(0, 0)].simd_gt(rotmat[(1, 1)]) & rotmat[(0, 0)].simd_gt(rotmat[(2, 2)]),
|| {
let denom = (T::one() + rotmat[(0, 0)] - rotmat[(1, 1)] - rotmat[(2, 2)])
.simd_sqrt()
* crate::convert(2.0);
Quaternion::new(
(rotmat[(2, 1)] - rotmat[(1, 2)]) / denom,
quarter * denom,
(rotmat[(0, 1)] + rotmat[(1, 0)]) / denom,
(rotmat[(0, 2)] + rotmat[(2, 0)]) / denom,
)
},
),
(
|| rotmat[(1, 1)].simd_gt(rotmat[(2, 2)]),
|| {
let denom = (T::one() + rotmat[(1, 1)] - rotmat[(0, 0)] - rotmat[(2, 2)])
.simd_sqrt()
* crate::convert(2.0);
Quaternion::new(
(rotmat[(0, 2)] - rotmat[(2, 0)]) / denom,
(rotmat[(0, 1)] + rotmat[(1, 0)]) / denom,
quarter * denom,
(rotmat[(1, 2)] + rotmat[(2, 1)]) / denom,
)
},
),
|| {
let denom = (T::one() + rotmat[(2, 2)] - rotmat[(0, 0)] - rotmat[(1, 1)])
.simd_sqrt()
* crate::convert(2.0);
Quaternion::new(
(rotmat[(1, 0)] - rotmat[(0, 1)]) / denom,
(rotmat[(0, 2)] + rotmat[(2, 0)]) / denom,
(rotmat[(1, 2)] + rotmat[(2, 1)]) / denom,
quarter * denom,
)
},
);
Self::new_unchecked(res)
}
/// Builds an unit quaternion by extracting the rotation part of the given transformation `m`.
///
/// This is an iterative method. See `.from_matrix_eps` to provide mover
/// convergence parameters and starting solution.
/// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al.
pub fn from_matrix(m: &Matrix3<T>) -> Self
where
T: RealField,
{
Rotation3::from_matrix(m).into()
}
/// Builds an unit quaternion by extracting the rotation part of the given transformation `m`.
///
/// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al.
///
/// # Parameters
///
/// * `m`: the matrix from which the rotational part is to be extracted.
/// * `eps`: the angular errors tolerated between the current rotation and the optimal one.
/// * `max_iter`: the maximum number of iterations. Loops indefinitely until convergence if set to `0`.
/// * `guess`: an estimate of the solution. Convergence will be significantly faster if an initial solution close
/// to the actual solution is provided. Can be set to `UnitQuaternion::identity()` if no other
/// guesses come to mind.
pub fn from_matrix_eps(m: &Matrix3<T>, eps: T, max_iter: usize, guess: Self) -> Self
where
T: RealField,
{
let guess = Rotation3::from(guess);
Rotation3::from_matrix_eps(m, eps, max_iter, guess).into()
}
/// The unit quaternion needed to make `a` and `b` be collinear and point toward the same
/// direction. Returns `None` if both `a` and `b` are collinear and point to opposite directions, as then the
/// rotation desired is not unique.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Vector3, UnitQuaternion};
/// let a = Vector3::new(1.0, 2.0, 3.0);
/// let b = Vector3::new(3.0, 1.0, 2.0);
/// let q = UnitQuaternion::rotation_between(&a, &b).unwrap();
/// assert_relative_eq!(q * a, b);
/// assert_relative_eq!(q.inverse() * b, a);
/// ```
#[inline]
pub fn rotation_between<SB, SC>(a: &Vector<T, U3, SB>, b: &Vector<T, U3, SC>) -> Option<Self>
where
T: RealField,
SB: Storage<T, U3>,
SC: Storage<T, U3>,
{
Self::scaled_rotation_between(a, b, T::one())
}
/// The smallest rotation needed to make `a` and `b` collinear and point toward the same
/// direction, raised to the power `s`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Vector3, UnitQuaternion};
/// let a = Vector3::new(1.0, 2.0, 3.0);
/// let b = Vector3::new(3.0, 1.0, 2.0);
/// let q2 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.2).unwrap();
/// let q5 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.5).unwrap();
/// assert_relative_eq!(q2 * q2 * q2 * q2 * q2 * a, b, epsilon = 1.0e-6);
/// assert_relative_eq!(q5 * q5 * a, b, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn scaled_rotation_between<SB, SC>(
a: &Vector<T, U3, SB>,
b: &Vector<T, U3, SC>,
s: T,
) -> Option<Self>
where
T: RealField,
SB: Storage<T, U3>,
SC: Storage<T, U3>,
{
// TODO: code duplication with Rotation.
if let (Some(na), Some(nb)) = (
Unit::try_new(a.clone_owned(), T::zero()),
Unit::try_new(b.clone_owned(), T::zero()),
) {
Self::scaled_rotation_between_axis(&na, &nb, s)
} else {
Some(Self::identity())
}
}
/// The unit quaternion needed to make `a` and `b` be collinear and point toward the same
/// direction.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Unit, Vector3, UnitQuaternion};
/// let a = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
/// let b = Unit::new_normalize(Vector3::new(3.0, 1.0, 2.0));
/// let q = UnitQuaternion::rotation_between(&a, &b).unwrap();
/// assert_relative_eq!(q * a, b);
/// assert_relative_eq!(q.inverse() * b, a);
/// ```
#[inline]
pub fn rotation_between_axis<SB, SC>(
a: &Unit<Vector<T, U3, SB>>,
b: &Unit<Vector<T, U3, SC>>,
) -> Option<Self>
where
T: RealField,
SB: Storage<T, U3>,
SC: Storage<T, U3>,
{
Self::scaled_rotation_between_axis(a, b, T::one())
}
/// The smallest rotation needed to make `a` and `b` collinear and point toward the same
/// direction, raised to the power `s`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Unit, Vector3, UnitQuaternion};
/// let a = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
/// let b = Unit::new_normalize(Vector3::new(3.0, 1.0, 2.0));
/// let q2 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.2).unwrap();
/// let q5 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.5).unwrap();
/// assert_relative_eq!(q2 * q2 * q2 * q2 * q2 * a, b, epsilon = 1.0e-6);
/// assert_relative_eq!(q5 * q5 * a, b, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn scaled_rotation_between_axis<SB, SC>(
na: &Unit<Vector<T, U3, SB>>,
nb: &Unit<Vector<T, U3, SC>>,
s: T,
) -> Option<Self>
where
T: RealField,
SB: Storage<T, U3>,
SC: Storage<T, U3>,
{
// TODO: code duplication with Rotation.
let c = na.cross(&nb);
if let Some(axis) = Unit::try_new(c, T::default_epsilon()) {
let cos = na.dot(&nb);
// The cosinus may be out of [-1, 1] because of inaccuracies.
if cos <= -T::one() {
None
} else if cos >= T::one() {
Some(Self::identity())
} else {
Some(Self::from_axis_angle(&axis, cos.acos() * s))
}
} else if na.dot(&nb) < T::zero() {
// PI
//
// The rotation axis is undefined but the angle not zero. This is not a
// simple rotation.
None
} else {
// Zero
Some(Self::identity())
}
}
/// Creates an unit quaternion that corresponds to the local frame of an observer standing at the
/// origin and looking toward `dir`.
///
/// It maps the `z` axis to the direction `dir`.
///
/// # Arguments
/// * dir - The look direction. It does not need to be normalized.
/// * up - The vertical direction. It does not need to be normalized.
/// The only requirement of this parameter is to not be collinear to `dir`. Non-collinearity
/// is not checked.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{UnitQuaternion, Vector3};
/// let dir = Vector3::new(1.0, 2.0, 3.0);
/// let up = Vector3::y();
///
/// let q = UnitQuaternion::face_towards(&dir, &up);
/// assert_relative_eq!(q * Vector3::z(), dir.normalize());
/// ```
#[inline]
pub fn face_towards<SB, SC>(dir: &Vector<T, U3, SB>, up: &Vector<T, U3, SC>) -> Self
where
SB: Storage<T, U3>,
SC: Storage<T, U3>,
{
Self::from_rotation_matrix(&Rotation3::face_towards(dir, up))
}
/// Deprecated: Use [UnitQuaternion::face_towards] instead.
#[deprecated(note = "renamed to `face_towards`")]
pub fn new_observer_frames<SB, SC>(dir: &Vector<T, U3, SB>, up: &Vector<T, U3, SC>) -> Self
where
SB: Storage<T, U3>,
SC: Storage<T, U3>,
{
Self::face_towards(dir, up)
}
/// Builds a right-handed look-at view matrix without translation.
///
/// It maps the view direction `dir` to the **negative** `z` axis.
/// This conforms to the common notion of right handed look-at matrix from the computer
/// graphics community.
///
/// # Arguments
/// * dir The view direction. It does not need to be normalized.
/// * up - A vector approximately aligned with required the vertical axis. It does not need
/// to be normalized. The only requirement of this parameter is to not be collinear to `dir`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{UnitQuaternion, Vector3};
/// let dir = Vector3::new(1.0, 2.0, 3.0);
/// let up = Vector3::y();
///
/// let q = UnitQuaternion::look_at_rh(&dir, &up);
/// assert_relative_eq!(q * dir.normalize(), -Vector3::z());
/// ```
#[inline]
pub fn look_at_rh<SB, SC>(dir: &Vector<T, U3, SB>, up: &Vector<T, U3, SC>) -> Self
where
SB: Storage<T, U3>,
SC: Storage<T, U3>,
{
Self::face_towards(&-dir, up).inverse()
}
/// Builds a left-handed look-at view matrix without translation.
///
/// It maps the view direction `dir` to the **positive** `z` axis.
/// This conforms to the common notion of left handed look-at matrix from the computer
/// graphics community.
///
/// # Arguments
/// * dir The view direction. It does not need to be normalized.
/// * up - A vector approximately aligned with required the vertical axis. The only
/// requirement of this parameter is to not be collinear to `dir`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{UnitQuaternion, Vector3};
/// let dir = Vector3::new(1.0, 2.0, 3.0);
/// let up = Vector3::y();
///
/// let q = UnitQuaternion::look_at_lh(&dir, &up);
/// assert_relative_eq!(q * dir.normalize(), Vector3::z());
/// ```
#[inline]
pub fn look_at_lh<SB, SC>(dir: &Vector<T, U3, SB>, up: &Vector<T, U3, SC>) -> Self
where
SB: Storage<T, U3>,
SC: Storage<T, U3>,
{
Self::face_towards(dir, up).inverse()
}
/// Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.
///
/// If `axisangle` has a magnitude smaller than `T::default_epsilon()`, this returns the identity rotation.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{UnitQuaternion, Point3, Vector3};
/// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
/// // Point and vector being transformed in the tests.
/// let pt = Point3::new(4.0, 5.0, 6.0);
/// let vec = Vector3::new(4.0, 5.0, 6.0);
/// let q = UnitQuaternion::new(axisangle);
///
/// assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
/// assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
///
/// // A zero vector yields an identity.
/// assert_eq!(UnitQuaternion::new(Vector3::<f32>::zeros()), UnitQuaternion::identity());
/// ```
#[inline]
pub fn new<SB>(axisangle: Vector<T, U3, SB>) -> Self
where
SB: Storage<T, U3>,
{
let two: T = crate::convert(2.0f64);
let q = Quaternion::<T>::from_imag(axisangle / two).exp();
Self::new_unchecked(q)
}
/// Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.
///
/// If `axisangle` has a magnitude smaller than `eps`, this returns the identity rotation.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{UnitQuaternion, Point3, Vector3};
/// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
/// // Point and vector being transformed in the tests.
/// let pt = Point3::new(4.0, 5.0, 6.0);
/// let vec = Vector3::new(4.0, 5.0, 6.0);
/// let q = UnitQuaternion::new_eps(axisangle, 1.0e-6);
///
/// assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
/// assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
///
/// // An almost zero vector yields an identity.
/// assert_eq!(UnitQuaternion::new_eps(Vector3::new(1.0e-8, 1.0e-9, 1.0e-7), 1.0e-6), UnitQuaternion::identity());
/// ```
#[inline]
pub fn new_eps<SB>(axisangle: Vector<T, U3, SB>, eps: T) -> Self
where
SB: Storage<T, U3>,
{
let two: T = crate::convert(2.0f64);
let q = Quaternion::<T>::from_imag(axisangle / two).exp_eps(eps);
Self::new_unchecked(q)
}
/// Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.
///
/// If `axisangle` has a magnitude smaller than `T::default_epsilon()`, this returns the identity rotation.
/// Same as `Self::new(axisangle)`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{UnitQuaternion, Point3, Vector3};
/// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
/// // Point and vector being transformed in the tests.
/// let pt = Point3::new(4.0, 5.0, 6.0);
/// let vec = Vector3::new(4.0, 5.0, 6.0);
/// let q = UnitQuaternion::from_scaled_axis(axisangle);
///
/// assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
/// assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
///
/// // A zero vector yields an identity.
/// assert_eq!(UnitQuaternion::from_scaled_axis(Vector3::<f32>::zeros()), UnitQuaternion::identity());
/// ```
#[inline]
pub fn from_scaled_axis<SB>(axisangle: Vector<T, U3, SB>) -> Self
where
SB: Storage<T, U3>,
{
Self::new(axisangle)
}
/// Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.
///
/// If `axisangle` has a magnitude smaller than `eps`, this returns the identity rotation.
/// Same as `Self::new_eps(axisangle, eps)`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{UnitQuaternion, Point3, Vector3};
/// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
/// // Point and vector being transformed in the tests.
/// let pt = Point3::new(4.0, 5.0, 6.0);
/// let vec = Vector3::new(4.0, 5.0, 6.0);
/// let q = UnitQuaternion::from_scaled_axis_eps(axisangle, 1.0e-6);
///
/// assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
/// assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
///
/// // An almost zero vector yields an identity.
/// assert_eq!(UnitQuaternion::from_scaled_axis_eps(Vector3::new(1.0e-8, 1.0e-9, 1.0e-7), 1.0e-6), UnitQuaternion::identity());
/// ```
#[inline]
pub fn from_scaled_axis_eps<SB>(axisangle: Vector<T, U3, SB>, eps: T) -> Self
where
SB: Storage<T, U3>,
{
Self::new_eps(axisangle, eps)
}
/// Create the mean unit quaternion from a data structure implementing IntoIterator
/// returning unit quaternions.
///
/// The method will panic if the iterator does not return any quaternions.
///
/// Algorithm from: Oshman, Yaakov, and Avishy Carmi. "Attitude estimation from vector
/// observations using a genetic-algorithm-embedded quaternion particle filter." Journal of
/// Guidance, Control, and Dynamics 29.4 (2006): 879-891.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{UnitQuaternion};
/// let q1 = UnitQuaternion::from_euler_angles(0.0, 0.0, 0.0);
/// let q2 = UnitQuaternion::from_euler_angles(-0.1, 0.0, 0.0);
/// let q3 = UnitQuaternion::from_euler_angles(0.1, 0.0, 0.0);
///
/// let quat_vec = vec![q1, q2, q3];
/// let q_mean = UnitQuaternion::mean_of(quat_vec);
///
/// let euler_angles_mean = q_mean.euler_angles();
/// assert_relative_eq!(euler_angles_mean.0, 0.0, epsilon = 1.0e-7)
/// ```
#[inline]
pub fn mean_of(unit_quaternions: impl IntoIterator<Item = Self>) -> Self
where
T: RealField,
{
let quaternions_matrix: Matrix4<T> = unit_quaternions
.into_iter()
.map(|q| q.as_vector() * q.as_vector().transpose())
.sum();
assert!(!quaternions_matrix.is_zero());
let eigen_matrix = quaternions_matrix
.try_symmetric_eigen(T::RealField::default_epsilon(), 10)
.expect("Quaternions matrix could not be diagonalized. This behavior should not be possible.");
let max_eigenvalue_index = eigen_matrix
.eigenvalues
.iter()
.position(|v| *v == eigen_matrix.eigenvalues.max())
.unwrap();
let max_eigenvector = eigen_matrix.eigenvectors.column(max_eigenvalue_index);
UnitQuaternion::from_quaternion(Quaternion::new(
max_eigenvector[0],
max_eigenvector[1],
max_eigenvector[2],
max_eigenvector[3],
))
}
}
impl<T: SimdRealField> One for UnitQuaternion<T>
where
T::Element: SimdRealField,
{
#[inline]
fn one() -> Self {
Self::identity()
}
}
#[cfg(feature = "rand-no-std")]
impl<T: SimdRealField> Distribution<UnitQuaternion<T>> for Standard
where
T::Element: SimdRealField,
OpenClosed01: Distribution<T>,
T: SampleUniform,
{
/// Generate a uniformly distributed random rotation quaternion.
#[inline]
fn sample<'a, R: Rng + ?Sized>(&self, rng: &'a mut R) -> UnitQuaternion<T> {
// Ken Shoemake's Subgroup Algorithm
// Uniform random rotations.
// In D. Kirk, editor, Graphics Gems III, pages 124-132. Academic, New York, 1992.
let x0 = rng.sample(OpenClosed01);
let twopi = Uniform::new(T::zero(), T::simd_two_pi());
let theta1 = rng.sample(&twopi);
let theta2 = rng.sample(&twopi);
let s1 = theta1.simd_sin();
let c1 = theta1.simd_cos();
let s2 = theta2.simd_sin();
let c2 = theta2.simd_cos();
let r1 = (T::one() - x0).simd_sqrt();
let r2 = x0.simd_sqrt();
Unit::new_unchecked(Quaternion::new(s1 * r1, c1 * r1, s2 * r2, c2 * r2))
}
}
#[cfg(feature = "arbitrary")]
impl<T: RealField + Arbitrary> Arbitrary for UnitQuaternion<T>
where
Owned<T, U4>: Send,
Owned<T, U3>: Send,
{
#[inline]
fn arbitrary(g: &mut Gen) -> Self {
let axisangle = Vector3::arbitrary(g);
Self::from_scaled_axis(axisangle)
}
}
#[cfg(test)]
#[cfg(feature = "rand")]
mod tests {
extern crate rand_xorshift;
use super::*;
use rand::SeedableRng;
#[test]
fn random_unit_quats_are_unit() {
let mut rng = rand_xorshift::XorShiftRng::from_seed([0xAB; 16]);
for _ in 0..1000 {
let x = rng.gen::<UnitQuaternion<f32>>();
assert!(relative_eq!(x.into_inner().norm(), 1.0))
}
}
}