nalgebra/src/tests/mat.rs
Sébastien Crozet 347883caa1 Rework of the traits for Vectors.
The goal is to make traits less fine-grained for vectors, and reduce the amount of `use`.

- Scalar{Mul, Div} are removed, replaced by Mul<N, V> and Div<N, V>,
- Ring and DivisionRing are removed. Use Num instead.
- VectorSpace, Dot, and Norm are removed, replaced by the new, higher-level traits.

Add four traits:
- Vec: common operations on vectors. Replaces VectorSpace and Dot.
- AlgebraicVec: Vec + the old Norm trait.
- VecExt: Vec + every other traits vectors implement.
- AlgebraicVecExt: AlgebraicVec + VecExt.
2013-08-18 18:33:25 +02:00

132 lines
2.3 KiB
Rust

#[test]
use std::num::{Real, One, abs};
#[test]
use std::rand::random;
#[test]
use std::cmp::ApproxEq;
#[test]
use traits::inv::Inv;
#[test]
use traits::rotation::{Rotation, Rotatable};
#[test]
use traits::indexable::Indexable;
#[test]
use traits::transpose::Transpose;
#[test]
use traits::vector::AlgebraicVec;
#[test]
use vec::{Vec1, Vec3};
#[test]
use mat::{Mat1, Mat2, Mat3, Mat4, Mat5, Mat6};
#[test]
use adaptors::rotmat::Rotmat;
macro_rules! test_inv_mat_impl(
($t: ty) => (
do 10000.times {
let randmat : $t = random();
assert!((randmat.inverse().unwrap() * randmat).approx_eq(&One::one()));
}
);
)
macro_rules! test_transpose_mat_impl(
($t: ty) => (
do 10000.times {
let randmat : $t = random();
assert!(randmat.transposed().transposed().eq(&randmat));
}
);
)
#[test]
fn test_transpose_mat1() {
test_transpose_mat_impl!(Mat1<f64>);
}
#[test]
fn test_transpose_mat2() {
test_transpose_mat_impl!(Mat2<f64>);
}
#[test]
fn test_transpose_mat3() {
test_transpose_mat_impl!(Mat3<f64>);
}
#[test]
fn test_transpose_mat4() {
test_transpose_mat_impl!(Mat4<f64>);
}
#[test]
fn test_transpose_mat5() {
test_transpose_mat_impl!(Mat5<f64>);
}
#[test]
fn test_transpose_mat6() {
test_transpose_mat_impl!(Mat6<f64>);
}
#[test]
fn test_inv_mat1() {
test_inv_mat_impl!(Mat1<f64>);
}
#[test]
fn test_inv_mat2() {
test_inv_mat_impl!(Mat2<f64>);
}
#[test]
fn test_inv_mat3() {
test_inv_mat_impl!(Mat3<f64>);
}
#[test]
fn test_inv_mat4() {
test_inv_mat_impl!(Mat4<f64>);
}
#[test]
fn test_inv_mat5() {
test_inv_mat_impl!(Mat5<f64>);
}
#[test]
fn test_inv_mat6() {
test_inv_mat_impl!(Mat6<f64>);
}
#[test]
fn test_rotation2() {
do 10000.times {
let randmat = One::one::<Rotmat<Mat2<f64>>>();
let ang = &Vec1::new(abs::<f64>(random()) % Real::pi());
assert!(randmat.rotated(ang).rotation().approx_eq(ang));
}
}
#[test]
fn test_index_mat2() {
let mat: Mat2<f64> = random();
assert!(mat.at((0, 1)) == mat.transposed().at((1, 0)));
}
#[test]
fn test_inv_rotation3() {
do 10000.times {
let randmat = One::one::<Rotmat<Mat3<f64>>>();
let dir: Vec3<f64> = random();
let ang = &(dir.normalized() * (abs::<f64>(random()) % Real::pi()));
let rot = randmat.rotated(ang);
assert!((rot.transposed() * rot).approx_eq(&One::one()));
}
}