forked from M-Labs/nalgebra
175 lines
5.9 KiB
Rust
175 lines
5.9 KiB
Rust
/*
|
||
*
|
||
* This provides the following operator overladings:
|
||
*
|
||
* Index<(usize, usize)>
|
||
*
|
||
* Rotation × Rotation
|
||
* Rotation ÷ Rotation
|
||
* Rotation × Matrix
|
||
* Matrix × Rotation
|
||
* Matrix ÷ Rotation
|
||
* Rotation × Point
|
||
* Rotation × Unit<Vector>
|
||
*
|
||
*
|
||
* Rotation ×= Rotation
|
||
* Matrix ×= Rotation
|
||
*/
|
||
|
||
use num::{One, Zero};
|
||
use std::ops::{Div, DivAssign, Index, Mul, MulAssign};
|
||
|
||
use simba::scalar::{ClosedAdd, ClosedMul};
|
||
|
||
use crate::base::allocator::Allocator;
|
||
use crate::base::constraint::{AreMultipliable, ShapeConstraint};
|
||
use crate::base::dimension::{Dim, DimName, U1};
|
||
use crate::base::storage::Storage;
|
||
use crate::base::{DefaultAllocator, Matrix, MatrixMN, Scalar, Unit, Vector, VectorN};
|
||
|
||
use crate::geometry::{Point, Rotation};
|
||
|
||
impl<N: Scalar, D: DimName> Index<(usize, usize)> for Rotation<N, D>
|
||
where
|
||
DefaultAllocator: Allocator<N, D, D>,
|
||
{
|
||
type Output = N;
|
||
|
||
#[inline]
|
||
fn index(&self, row_col: (usize, usize)) -> &N {
|
||
self.matrix().index(row_col)
|
||
}
|
||
}
|
||
|
||
// Rotation × Rotation
|
||
md_impl_all!(
|
||
Mul, mul;
|
||
(D, D), (D, D) for D: DimName;
|
||
self: Rotation<N, D>, right: Rotation<N, D>, Output = Rotation<N, D>;
|
||
[val val] => Rotation::from_matrix_unchecked(self.into_inner() * right.into_inner());
|
||
[ref val] => Rotation::from_matrix_unchecked(self.matrix() * right.into_inner());
|
||
[val ref] => Rotation::from_matrix_unchecked(self.into_inner() * right.matrix());
|
||
[ref ref] => Rotation::from_matrix_unchecked(self.matrix() * right.matrix());
|
||
);
|
||
|
||
// Rotation ÷ Rotation
|
||
// FIXME: instead of calling inverse explicitly, could we just add a `mul_tr` or `mul_inv` method?
|
||
md_impl_all!(
|
||
Div, div;
|
||
(D, D), (D, D) for D: DimName;
|
||
self: Rotation<N, D>, right: Rotation<N, D>, Output = Rotation<N, D>;
|
||
[val val] => self * right.inverse();
|
||
[ref val] => self * right.inverse();
|
||
[val ref] => self * right.inverse();
|
||
[ref ref] => self * right.inverse();
|
||
);
|
||
|
||
// Rotation × Matrix
|
||
md_impl_all!(
|
||
Mul, mul;
|
||
(D1, D1), (R2, C2) for D1: DimName, R2: Dim, C2: Dim, SB: Storage<N, R2, C2>
|
||
where DefaultAllocator: Allocator<N, D1, C2>
|
||
where ShapeConstraint: AreMultipliable<D1, D1, R2, C2>;
|
||
self: Rotation<N, D1>, right: Matrix<N, R2, C2, SB>, Output = MatrixMN<N, D1, C2>;
|
||
[val val] => self.into_inner() * right;
|
||
[ref val] => self.matrix() * right;
|
||
[val ref] => self.into_inner() * right;
|
||
[ref ref] => self.matrix() * right;
|
||
);
|
||
|
||
// Matrix × Rotation
|
||
md_impl_all!(
|
||
Mul, mul;
|
||
(R1, C1), (D2, D2) for R1: Dim, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>
|
||
where DefaultAllocator: Allocator<N, R1, D2>
|
||
where ShapeConstraint: AreMultipliable<R1, C1, D2, D2>;
|
||
self: Matrix<N, R1, C1, SA>, right: Rotation<N, D2>, Output = MatrixMN<N, R1, D2>;
|
||
[val val] => self * right.into_inner();
|
||
[ref val] => self * right.into_inner();
|
||
[val ref] => self * right.matrix();
|
||
[ref ref] => self * right.matrix();
|
||
);
|
||
|
||
// Matrix ÷ Rotation
|
||
md_impl_all!(
|
||
Div, div;
|
||
(R1, C1), (D2, D2) for R1: Dim, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>
|
||
where DefaultAllocator: Allocator<N, R1, D2>
|
||
where ShapeConstraint: AreMultipliable<R1, C1, D2, D2>;
|
||
self: Matrix<N, R1, C1, SA>, right: Rotation<N, D2>, Output = MatrixMN<N, R1, D2>;
|
||
[val val] => self * right.inverse();
|
||
[ref val] => self * right.inverse();
|
||
[val ref] => self * right.inverse();
|
||
[ref ref] => self * right.inverse();
|
||
);
|
||
|
||
// Rotation × Point
|
||
// FIXME: we don't handle properly non-zero origins here. Do we want this to be the intended
|
||
// behavior?
|
||
md_impl_all!(
|
||
Mul, mul;
|
||
(D, D), (D, U1) for D: DimName
|
||
where DefaultAllocator: Allocator<N, D>
|
||
where ShapeConstraint: AreMultipliable<D, D, D, U1>;
|
||
self: Rotation<N, D>, right: Point<N, D>, Output = Point<N, D>;
|
||
[val val] => self.into_inner() * right;
|
||
[ref val] => self.matrix() * right;
|
||
[val ref] => self.into_inner() * right;
|
||
[ref ref] => self.matrix() * right;
|
||
);
|
||
|
||
// Rotation × Unit<Vector>
|
||
md_impl_all!(
|
||
Mul, mul;
|
||
(D, D), (D, U1) for D: DimName, S: Storage<N, D>
|
||
where DefaultAllocator: Allocator<N, D>
|
||
where ShapeConstraint: AreMultipliable<D, D, D, U1>;
|
||
self: Rotation<N, D>, right: Unit<Vector<N, D, S>>, Output = Unit<VectorN<N, D>>;
|
||
[val val] => Unit::new_unchecked(self.into_inner() * right.into_inner());
|
||
[ref val] => Unit::new_unchecked(self.matrix() * right.into_inner());
|
||
[val ref] => Unit::new_unchecked(self.into_inner() * right.as_ref());
|
||
[ref ref] => Unit::new_unchecked(self.matrix() * right.as_ref());
|
||
);
|
||
|
||
// Rotation ×= Rotation
|
||
// FIXME: try not to call `inverse()` explicitly.
|
||
|
||
md_assign_impl_all!(
|
||
MulAssign, mul_assign;
|
||
(D, D), (D, D) for D: DimName;
|
||
self: Rotation<N, D>, right: Rotation<N, D>;
|
||
[val] => self.matrix_mut_unchecked().mul_assign(right.into_inner());
|
||
[ref] => self.matrix_mut_unchecked().mul_assign(right.matrix());
|
||
);
|
||
|
||
md_assign_impl_all!(
|
||
DivAssign, div_assign;
|
||
(D, D), (D, D) for D: DimName;
|
||
self: Rotation<N, D>, right: Rotation<N, D>;
|
||
[val] => self.matrix_mut_unchecked().mul_assign(right.inverse().into_inner());
|
||
[ref] => self.matrix_mut_unchecked().mul_assign(right.inverse().matrix());
|
||
);
|
||
|
||
// Matrix *= Rotation
|
||
// FIXME: try not to call `inverse()` explicitly.
|
||
// FIXME: this shares the same limitations as for the current impl. of MulAssign for matrices.
|
||
// (In particular the number of matrix column must be equal to the number of rotation columns,
|
||
// i.e., equal to the rotation dimension.
|
||
|
||
md_assign_impl_all!(
|
||
MulAssign, mul_assign;
|
||
(R1, C1), (C1, C1) for R1: DimName, C1: DimName;
|
||
self: MatrixMN<N, R1, C1>, right: Rotation<N, C1>;
|
||
[val] => self.mul_assign(right.into_inner());
|
||
[ref] => self.mul_assign(right.matrix());
|
||
);
|
||
|
||
md_assign_impl_all!(
|
||
DivAssign, div_assign;
|
||
(R1, C1), (C1, C1) for R1: DimName, C1: DimName;
|
||
self: MatrixMN<N, R1, C1>, right: Rotation<N, C1>;
|
||
[val] => self.mul_assign(right.inverse().into_inner());
|
||
[ref] => self.mul_assign(right.inverse().matrix());
|
||
);
|