nalgebra/src/geometry/unit_complex.rs
2017-02-15 22:04:34 +01:00

234 lines
6.8 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use std::fmt;
use approx::ApproxEq;
use num_complex::Complex;
use alga::general::Real;
use core::{Unit, SquareMatrix, Vector1, Matrix3};
use core::dimension::U2;
use geometry::Rotation2;
/// A complex number with a norm equal to 1.
///
/// <center>
/// <big><b>
/// Due to a [bug](https://github.com/rust-lang/rust/issues/32077) in rustdoc, the documentation
/// below has been written manually lists only method signatures.<br>
/// Trait implementations are not listed either.
/// </b></big>
/// </center>
///
/// Please refer directly to the documentation written above each function definition on the source
/// code for more details.
///
///
/// <h2 id="methods">Methods</h2>
///
/// <h4 class="method"><span class="invisible">
/// <code>fn <a class="fnname">angle</a>(&self) -> N</code>
/// </h4>
///
/// <h4 class="method"><span class="invisible">
/// <code>fn <a class="fnname">angle_to</a>(&self, other: &Self) -> N</code>
/// </h4>
///
/// <h4 class="method"><span class="invisible">
/// <code>fn <a class="fnname">complex</a>(&self) -> &Complex</code>
/// </h4>
///
/// <h4 class="method"><span class="invisible">
/// <code>fn <a class="fnname">conjugate</a>(&self) -> Self</code>
/// </h4>
///
/// <h4 class="method"><span class="invisible">
/// <code>fn <a class="fnname">conjugate_mut</a>(&mut self)</code>
/// </h4>
///
/// <h4 class="method"><span class="invisible">
/// <code>fn <a class="fnname">from_angle</a>(angle: N) -> Self</code>
/// </h4>
///
/// <h4 class="method"><span class="invisible">
/// <code>fn <a class="fnname">from_complex</a>(q: Complex) -> Self</code>
/// </h4>
///
/// <h4 class="method"><span class="invisible">
/// <code>fn <a class="fnname">from_rotation_matrix</a>(rotmat: &RotationBase) -> Self</code>
/// </h4>
///
/// <h4 class="method"><span class="invisible">
/// <code>fn <a class="fnname">from_scaled_axis</a>(axisangle: ColumnVector) -> Self</code>
/// </h4>
///
/// <h4 class="method"><span class="invisible">
/// <code>fn <a class="fnname">identity</a>() -> Self</code>
/// </h4>
///
/// <h4 class="method"><span class="invisible">
/// <code>fn <a class="fnname">inverse</a>(&self) -> Self</code>
/// </h4>
///
/// <h4 class="method"><span class="invisible">
/// <code>fn <a class="fnname">inverse_mut</a>(&mut self)</code>
/// </h4>
///
/// <h4 class="method"><span class="invisible">
/// <code>fn <a class="fnname">new</a>(angle: N) -> Self</code>
/// </h4>
///
/// <h4 class="method"><span class="invisible">
/// <code>fn <a class="fnname">powf</a>(&self, n: N) -> Self</code>
/// </h4>
///
/// <h4 class="method"><span class="invisible">
/// <code>fn <a class="fnname">rotation_between</a>(a: &ColumnVector<N, U2, SB>, b: &ColumnVector) -> Self</code>
/// </h4>
///
/// <h4 class="method"><span class="invisible">
/// <code>fn <a class="fnname">rotation_to</a>(&self, other: &Self) -> Self</code>
/// </h4>
///
/// <h4 class="method"><span class="invisible">
/// <code>fn <a class="fnname">scaled_axis</a>(&self) -> Vector1</code>
/// </h4>
///
/// <h4 class="method"><span class="invisible">
/// <code>fn <a class="fnname">scaled_rotation_between</a>(a: &ColumnVector<N, U2, SB>, b: &ColumnVector, s: N) -> Self</code>
/// </h4>
///
/// <h4 class="method"><span class="invisible">
/// <code>fn <a class="fnname">to_homogeneous</a>(&self) -> Matrix3</code>
/// </h4>
///
/// <h4 class="method"><span class="invisible">
/// <code>fn <a class="fnname">to_rotation_matrix</a>(&self) -> Rotation2</code>
/// </h4>
pub type UnitComplex<N> = Unit<Complex<N>>;
impl<N: Real> UnitComplex<N> {
/// The rotation angle in `]-pi; pi]` of this unit complex number.
#[inline]
pub fn angle(&self) -> N {
self.im.atan2(self.re)
}
/// The rotation angle returned as a 1-dimensional vector.
#[inline]
pub fn scaled_axis(&self) -> Vector1<N> {
Vector1::new(self.angle())
}
/// The underlying complex number.
///
/// Same as `self.as_ref()`.
#[inline]
pub fn complex(&self) -> &Complex<N> {
self.as_ref()
}
/// Compute the conjugate of this unit complex number.
#[inline]
pub fn conjugate(&self) -> Self {
UnitComplex::new_unchecked(self.conj())
}
/// Inverts this complex number if it is not zero.
#[inline]
pub fn inverse(&self) -> Self {
self.conjugate()
}
/// The rotation angle needed to make `self` and `other` coincide.
#[inline]
pub fn angle_to(&self, other: &Self) -> N {
let delta = self.rotation_to(other);
delta.angle()
}
/// The unit complex number needed to make `self` and `other` coincide.
///
/// The result is such that: `self.rotation_to(other) * self == other`.
#[inline]
pub fn rotation_to(&self, other: &Self) -> Self {
other / self
}
/// Compute in-place the conjugate of this unit complex number.
#[inline]
pub fn conjugate_mut(&mut self) {
let me = self.as_mut_unchecked();
me.im = -me.im;
}
/// Inverts in-place this unit complex number.
#[inline]
pub fn inverse_mut(&mut self) {
self.conjugate_mut()
}
/// Raise this unit complex number to a given floating power.
///
/// This returns the unit complex number that identifies a rotation angle equal to
/// `self.angle() × n`.
#[inline]
pub fn powf(&self, n: N) -> Self {
Self::from_angle(self.angle() * n)
}
/// Builds the rotation matrix corresponding to this unit complex number.
#[inline]
pub fn to_rotation_matrix(&self) -> Rotation2<N> {
let r = self.re;
let i = self.im;
Rotation2::from_matrix_unchecked(
SquareMatrix::<_, U2, _>::new(
r, -i,
i, r
)
)
}
/// Converts this unit complex number into its equivalent homogeneous transformation matrix.
#[inline]
pub fn to_homogeneous(&self) -> Matrix3<N> {
self.to_rotation_matrix().to_homogeneous()
}
}
impl<N: Real + fmt::Display> fmt::Display for UnitComplex<N> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "UnitComplex angle: {}", self.angle())
}
}
impl<N: Real> ApproxEq for UnitComplex<N> {
type Epsilon = N;
#[inline]
fn default_epsilon() -> Self::Epsilon {
N::default_epsilon()
}
#[inline]
fn default_max_relative() -> Self::Epsilon {
N::default_max_relative()
}
#[inline]
fn default_max_ulps() -> u32 {
N::default_max_ulps()
}
#[inline]
fn relative_eq(&self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon) -> bool {
self.re.relative_eq(&other.re, epsilon, max_relative) &&
self.im.relative_eq(&other.im, epsilon, max_relative)
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.re.ulps_eq(&other.re, epsilon, max_ulps) &&
self.im.ulps_eq(&other.im, epsilon, max_ulps)
}
}